期刊文献+

基于D-S证据理论的室内组合定位算法 被引量:3

Integrated indoor positioning algorithm based on D-S evidence theory
下载PDF
导出
摘要 在非定位系统部署信标的大体量场区环境下,针对基于位置的服务(LBS)的室内定位需求问题,提出了一种基于D-S证据推理理论的无线局域网/惯性测量组件(WiFi/IMU)组合定位算法。该算法首先建立各接入点(AP)单点的信号强度传输模型,并利用卡尔曼滤波对接收到的信号强度指示(RSSI)值进行去噪修正处理;然后通过D-S证据理论对实时采集的WiFi信号强度、偏航角、各轴加速度的多源信息进行融合处理,选取可信度高的指纹区块;最后通过加权K近邻(WKNN)算法得到终端估算位置。单元场区仿真实验结果显示,最大误差2.36 m,综合平均误差1.27m,验证了该算法的可行性与有效性;且误差累计概率分布在小于等于典型距离时为88.20%,优于惩罚参数C支持向量回归机(C-SVR)的70.82%和行人航迹推算(PDR)算法的67.85%。进一步地,算法在全场区实际实验中也表现出了良好的环境适用性。 An integrated positioning algorithm for Wireless Fidelity/Inertial Measurement Unit(WiFi/IMU) based on D-S evidence inference theory was proposed for large indoor area Location Based Service(LBS) without beacons deployment.Firstly, the transmission model of signal strength of a single Access Point(AP) was established, then Kalman Filter was used to denoise the Received Signal Strength Indication(RSSI). Secondly, Dempster/Shafer(D-S) evidence theory was applied in the data fusion process for real-time acquisition of multi-sources, including the signal strength of WiFi, yaw and accelerations on all shafts; then the fingerprint blocks with high confidence were selected. Finally, the Weighted K-Nearest Neighbor(WKNN) method was exploited for the terminal position estimation. Numerical simulations on unit area show that the maximum error is 2.36 m and the mean error is 1.27 m, which proves the viability and effectiveness of the proposed algorithm;the cumulated error probability is 88. 20% when the distance is no greater than the typical numerical value, which is superior to 70.82% of C-Support Vector Regression(C-SVR) or 67. 85% of Pedestrian Dead Reckoning(PDR). Furthermore,experiments on the whole area of the real environment also show that the proposed algorithm has an excellent environmental applicability.
出处 《计算机应用》 CSCD 北大核心 2017年第4期1198-1201,1211,共5页 journal of Computer Applications
基金 天津市自然科学基金资助项目(12JCZDJC34200)~~
关键词 无线局域网 室内定位 接收信号强度指示 位置指纹 D-S证据理论 加权K近邻 Wireless Local Area Network(WLAN) indoor positioning Received Signal Strength Indication(RSSI) location fingerprint Dempster/Shafer(D-S) evidence theory Weighted K-Nearest Neighbor(WKNN)
  • 相关文献

参考文献7

二级参考文献73

  • 1苏炜,龚壁建,潘笑.超声波测距误差分析[J].传感器技术,2004,23(6):8-11. 被引量:80
  • 2郎昕培,许可,赵明.基于无线局域网的位置定位技术研究和发展[J].计算机科学,2006,33(6):21-24. 被引量:24
  • 3丁光庆,冯新喜.采用异步状态更新的红外与激光联合跟踪[J].弹箭与制导学报,2006,26(3):349-351. 被引量:1
  • 4曾文,王宏,徐皑冬.超宽带技术的信道模型和定位技术研究与分析[J].计算机科学,2007,34(7):34-37. 被引量:12
  • 5Niculescu D, Nath B. Ad Hoc Positioning System (APS) Using AOA [C]//Proc 22nd Annual Joint Conf of the IEEE Computer and Communications Societies (INFOCOM'2003). IEEE, 2003, Vol. 3.
  • 6Harter A, Hopper A, Steggles P. The Anatomy of a Context-aware Applicaiton [ C]//Proc. 5th ACM MOBICOM Conf.. Seattle, Aug. 1999:59-68.
  • 7Priyantha N, Chakraborty A, Balakrishnan H. The Cricket Location-support System[C]//Proc. 6th ACM MOBICOM Conf. , Boston, MA, Aug. 2000:32-43.
  • 8Priyantha N. The Cricket Indoor Location System[ D]. Massachusetts Institute of Technology.. Jun. 2005.
  • 9David Gay, Philip Levis, David Culler. nesC 1.1 Language Reference Manual[EB/OL]. May. 2003. http://nescc, sourceforge. net/papers/nesc-ref. pdf.
  • 10Bahl P, Padmanabhan V. Radar: An In-building RF-based User Location and Tracking System [ C ]//Proc of INFOCOM'2000. Israel, 2000 : 775 - 784.

共引文献174

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部