期刊文献+

基于几何逼近法的斜尖柔性穿刺针运动学研究 被引量:5

Geometric approximation approach based research on kinematics of bevel-tip flexible needles
下载PDF
导出
摘要 为了使得斜尖柔性穿刺针能够精确刺中目标靶点,建立斜尖柔性穿刺针的正逆向运动学模型.大量实验研究表明,柔性穿刺针在穿刺过程中,弯曲曲率近似常量沿着由固定半径的圆弧组成的路径进针.基于柔性穿刺针这种特性,利用D-H(Denavit-Hartenberg)参数法建立柔性穿刺针正向运动学模型;利用D-H参数法以及几何逼近法,基于针尖相对靶点的可达性条件,建立柔性穿刺针逆向运动学模型;通过仿真实验验证了所建立的柔性穿刺针运动学模型,结果表明,采用提供的运动学模型能够准确求出从进针点到靶点的所有路径. The forward and inverse kinematical models were established in order to accurately insert the bevel-tip flexible needle into target.Lots of experimental studies indicate that the binding curvature of flexible needles is approximately constant in the procedure of insertion,so the needle is inserted into soft tissue along apath composed of circular arcs of approximately constant radius.This feature of flexible needles was used.D-H(Denavit-Hartenberg)method was adopted to establish the forward kinematics model of flexible needles.The combination of D-H method and the geometric approximation approach were used to derive the inverse kinematics model of flexible needles under the consideration of the needle tip's reachability corresponding to target.The simulation results show that the proposed kinematics model can correctly obtain all feasible paths between the entry point and target.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第4期706-713,751,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(51665049) 国家自然科学基金创新研究群体科学基金资助项目(51221004) 青海省自然科学基金资助项目(2015-ZJ-906)
关键词 机器人辅助针穿刺 柔性穿刺针 运动学 几何逼近法 路径规划 robot-assisted needle insertion flexible needle kinematics geometric approximation approach path planning
  • 相关文献

参考文献4

二级参考文献65

  • 1杨文荣,杨庆新,樊长在,孙景峰,刘素贞,陈海燕.磁流体加速度传感器的特征参量分析[J].仪器仪表学报,2006,27(10):1228-1231. 被引量:8
  • 2Webster III R J, Kim J S, Cowan N J, et al. Nonholonomic modeling of needle steering[J]. International Journal of Robotics Research, 2006, 25(5/6): 509-525.
  • 3Hamzavi N, Chui C K, Chui C C, et al. Flexible liver-needle navigation using fish-like robotic elements[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2008: 3491-3496.
  • 4Okazawa S, Ebrahimi R, Chuang J, et al. Hand-held steerable needle device[J]. EEE/ASME Transactions on Mechatronics, 2005, 10(3): 285-296.
  • 5Sears P, Dupont R A steerable needle technology using curved concentric tubes[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2006: 2850-2856.
  • 6Glozman D, Shoham M. Image-guided robotic flexible needle steering[J]. IEEE Transactions on Robotics, 2007, 23(3): 459- 467.
  • 7Chen Z, Chen Y H. Analysis of multi-hinge compliant needle insertion[C]//IEEE International Conference on Virtual En- vironments, Human-Computer Interfaces, and Measurements Systems. Piscataway, NJ, USA: IEEE, 2009: 314-318.
  • 8DiMaio S P, Salcudean E S. Needle steering and motion planning in soft tissues[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(6): 965-974.
  • 9Engh J A, Podnar G, Khoo S Y, et al. Flexible needle steering system for percutaneous access to deep zones of the brain[C]// IEEE 32nd Annual Northeast Bioengineering Conference. Piscataway, NJ, USA: IEEE, 2006: 103-104.
  • 10Alterovitz R, Branicky M, Goldberg K. Motion planning under uncertainty for image-guided medical needle steering[J]. International Journal of Robotics Research, 2008, 27(11/12): 1361- 1374.

共引文献29

同被引文献25

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部