期刊文献+

基于橡皮筋势能下降策略的圆形件排样算法 被引量:5

Nesting Algorithm for Circular Blanks Based on Rubber Band Potential Energy Descending
下载PDF
导出
摘要 合理排样是钣金制品下料过程提高材料利用率降低企业生产成本的重要途径之一,针对圆形钣金制件的排样优化问题,提出一种基于橡皮筋势能下降策略的拟物理过程快速排样算法(RPED)。通过建立圆排样问题的数学优化模型,在理想化条件下制定橡皮筋势能下降排样策略,并对排样过程进行物理学受力分析和运动分析,提出基于时间节拍的排样过程离散模拟方法,最后结合精英保留遗传算法对排样模型的初始布局进行优化,进一步提高算法的全局搜索能力。计算机实验结果表明,RPED算法的平均板材利用率较企业实际生产排样高1.1%,而对国际通用算例RPED算法的平均板材利用率较RBLP和ASA算法高0.68%和0.19%。RPED排样优化算法可获得更高的平均板材利用率。 Optimal nesting is one effective method to reduce manufacturing cost by improving material utilization. To settle the nesting problem of circular blanks, a quick physical nesting algorithm based on rubber band potential energy descending (RPED) was proposed. Firstly, the mathematical optimal model of circular blanks nesting was constructed. Basic procedure of RPED strategy based on some ideal conditions was presented here. Secondly, force analysis and motion analysis were described in detail And the nesting simulation method in discrete time step was proposed. Finally, genetic algorithm was merged with RPED strategy to enable this hybrid version to get the best global solution. Several typical computer instances were carried out. And consequences showed that the average material utilization increased by 1.1% in engineering practice and by 0.68%/0.19% in other five international standard examples compared with other algorithms. The nesting algorithm proposed in this paper performs more effectively with a high average material utilization.
出处 《机械设计与制造》 北大核心 2017年第4期184-188,共5页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(51265002)
关键词 排样优化 橡皮筋算法 遗传算法 钣金下料 圆形件 Optimal Nesting Rubber Band Analogy Algorithm Genetic Algorithm Sheet Metal Blanking CircularBlanks
  • 相关文献

参考文献4

二级参考文献16

  • 1崔耀东,黄健民,张显全.矩形毛料无约束二维剪切排样的递归算法[J].计算机辅助设计与图形学学报,2006,18(7):948-951. 被引量:15
  • 2Cui Yaodong.Generating Optimal T-shape Cutting Patterns for Circular Blanks[J].Computers & Operations Research,2005,32(1):143-152.
  • 3Gilmore P C,Geomory R E.The Theory and Computation of Knapsack Functions[J].Operations Research,1966,14(5):849-859.
  • 4Wang Huaiqing,Huang Wenqi,Zhang Quan,et al.An Improved Algorithm for the Packing of Unequal Circles Within a Larger Containing Circle[J].European Journal of Operational Research,2002,141(2):440-453.
  • 5Zhang Defu,Deng Ansheng.An Effective Hybrid Algorithm for the Problem of Packing Circles into a Larger Containing Circle[J].Computers&Operations Research,2005,32(8):1941-1951.
  • 6Huang Wenqi,Li Yu,Li Chumin,et al.New Heuristic for Packing Unequal Circles into a Circular Container[J].Computers&Operations Research,2006,33(8):2125-2142.
  • 7Akeb H,Hifi M,M’Hallah R.A Beam Search Algorithm for the Circular Packing Problem[J].Computers&Operations Research,2009,36(5):1513-1528.
  • 8Akeb H,Hifi M,M’Hallah R.Adaptive Beam Search Lookahead Algorithms for the Circular Packing Problem[J].International Transactions in Operational Research,2010,17(5):553-575.
  • 9Bortfeldt A.A Genetic Algorithm for the Two-dimensional Strip Packing Problem with Rectangular Pieces[J].European Journal of Operational Research,2006,172(3):814-837.
  • 10Goncalves J F.A Hybrid Genetic Algorithm-heuristic for a Two-dimensional Orthogonal Packing Problem[J].European Journal of Operational Research,2007,183(3):1212-1229.

共引文献13

同被引文献27

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部