期刊文献+

基于Beta信誉模型的虚假Web服务QoS反馈滤除算法 被引量:2

Unfair web service QoS feedback filtering algorithm based on Beta reputation
下载PDF
导出
摘要 针对由于Web服务推荐用户提交虚假QoS反馈而导致的QoS预测准确度下降问题,提出了一种基于Beta信誉模型的虚假QoS反馈滤除算法。该算法首先将若干个经过认证的中心用户作为初始可信用户集;然后,评估用户反馈数据与可信用户集反馈数据的偏离程度;最后,根据用户提交的偏离反馈次数对其信誉度进行评估,并将信誉度高于可信阈值的用户判定为可信用户,使可信用户集得到更新。通过循环执行以上过程,大部分虚假用户将被分离出系统。实验结果表明:该算法具有较强的虚假用户筛查能力,可有效提升QoS预测算法的抗攻击能力。 During the process of web services selection, some service recommenders may give feed- backs which are inconsistent with their real experience intentionally, and thus causes the deviation of prediction results. To resolve this problem, an unfair QoS feedback filtering algorithm based on Beta reputation is proposed. Firstly, several certified center users are obtained to initialize the trustworthy set. Then, the deviation between the target user's feedback and the average value of trustworthy set is evaluated. Finally, each userrs reputation is calculated based on how many deviated feedbacks have been provided. The users whose reputation exceeds the trustworthy threshold will be recognized as trustworthy users. After several iterations, a majority of unfair users are filtered out. Experimental results demonstrate that the proposed approach can accurately filter out the unfair users and improve the robustness of QoS prediction algorithms against unfair feedback attacks.
出处 《海军工程大学学报》 CAS 北大核心 2017年第2期78-84,共7页 Journal of Naval University of Engineering
基金 国家部委基金资助项目(9140A04020215JB11050)
关键词 WEB服务 服务选择 QoS预测 Beta信誉模型 web service service selection . QoS prediction Beta reputation
  • 相关文献

参考文献3

二级参考文献24

  • 1HUANGGang MEIHong YANGFuqing.Runtime software architecture based on reflective middleware[J].Science in China(Series F),2004,47(5):555-576. 被引量:18
  • 2Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handboo[M]. Berlin: Springer, 2011:145-186.
  • 3Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]//Proe of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008 : 426-434 Mobasher B, Burke R, Sandvig J. Model-based collaborative filtering as a defense against profile injection.
  • 4attacks [C] // Proc of the 21st National Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2006:1388-1393.
  • 5Sandvig J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining [C] //Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:105-112.
  • 6Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering [C]//Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:49-56.
  • 7Pitsilis G, Marshall L. A model of trust derivation from evidence for use in recommendation systems, CS-TR-874 [R]. Newcastle, UK: University of Newcastle Upon Tyne, 2004.
  • 8Pitsilis G, Marshall L. Modeling trust for recommender systems using similarity metrics [C] //Proc of IFIPTM 2008. Berlin: Springer, 20081 103-118.
  • 9O'Donovan J, Smyth B. Trust in recommender systems [C]//Proe of the 10th lnt Conf on Intelligent User Interfaces. New York: ACM, 2005:167-174.
  • 10Kwon K, Cho J, Park Y. Multidimensional credibility model for neighbor selection in collaborative recommendation [J].Expert Systems with Applications, 2009, 36(3) :7114-7122.

共引文献150

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部