期刊文献+

MEROMORPHIC SOLUTIONS OF SOME TYPES OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS 被引量:2

MEROMORPHIC SOLUTIONS OF SOME TYPES OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS
下载PDF
导出
摘要 Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the problem of the existence of meromorphic solutions of some types of complex differential-difference equations and some properties of meromorphic solutions, and we ob- tain some results, which are the improvements and extensions of some results in references. Examples show that our results are precise. Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the problem of the existence of meromorphic solutions of some types of complex differential-difference equations and some properties of meromorphic solutions, and we ob- tain some results, which are the improvements and extensions of some results in references. Examples show that our results are precise.
作者 王钥
出处 《Acta Mathematica Scientia》 SCIE CSCD 2017年第3期732-751,共20页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(11171013) supported by the Fundamental Research Funds for the Central Universities the Research Funds of Renmin University of China(16XNH117)
关键词 Value distribution meromorphic solutions complex differential-difference equa-tions Value distribution meromorphic solutions complex differential-difference equa-tions
  • 相关文献

二级参考文献18

  • 1高凌云.ON THE GROWTH OF SOLUTIONS OF HIGHER-ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS[J].Acta Mathematica Scientia,2002,22(4):459-465. 被引量:6
  • 2Hayman W. Meromorphic Function. Oxford: Clarendon Press, 1964.
  • 3Yang Lo. Value Distribution Theory and New Research. Beijing: Science Press, 1982(in Chinese).
  • 4Yi Hongxun, Yang Chungchun. The Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 1995 (in Chinese).
  • 5Hille E. Ordinary Differential Equations in the Complex Domain. New York: Wiley, 1976.
  • 6Frei M. Uber die subnormalen losungen der differentialgleichung w″ + e^-Zw′ + (konst.)w = 0. Comment Math Helv, 1962, 36:1-8.
  • 7Ozawa M. On a solution of w″ + e^-Zw′ + (az + b)w = 0. Kodai Math J, 1980, 3: 295-309.
  • 8Gundersen G. On the question of whether f″+ e^-Zf′ + B(z)f = 0 can admit a solution f≠ 0 of finiteorder. Proc R S E, 1986, 102A: 9-17.
  • 9Langley J K. On complex oscillation and a problem of Ozawa. Kodai Math J, 1986, 9:430-439.
  • 10Amemiya I, Ozawa M. Non-existence of finite order solutions of w″+ e^-Zw′+ Q(z)w = 0. Hokkaido Math J, 1981, 10:1-17.

共引文献38

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部