摘要
为在彩色图像降噪时有效保留图像边缘信息,给出一种动态和静态相结合的引导滤波算法。由静态引导滤波得到权重函数,利用动态引导滤波从正则化输入图像中得到邻域像素加权函数,将两者相乘,生成邻接矩阵;将邻接矩阵每列元素相加,置于对角线位置,构成度矩阵;用度矩阵与邻接矩阵做差,构造动态拉普拉斯特征矩阵,以此作为正则项,在平滑图像的同时保持边缘,实现图像多尺度动静态滤波。针对6幅彩色图像的测试结果表明,所给算法可有效获取不同尺度结构图像,且滤波后图像边缘较为光滑。
A dynamic and static guide filtering algorithm is proposed to preserve the edge information of the color image in the process of noise reduction. The weighting function is obtained by static guide filtering, the neighborhood weighted functions are obtained from the normalized input image by dynamic guide filter. The two kinds of functions are multiplied, and the adjacency matrix is obtained. The sum of the elements of each column of the adjacency matrix is placed in the diagonal position to form a degree matrix. The difference between the degree matrix and the adjacency matrix is used to construct the dynamic Laplasse feature matrix, which is used as the regular term. In this way, the multi-scale dynamic and static filtering can be realized to smooth the image and keep the edge. The test results of 6 color images show that, the proposed algorithm can obtain the image with different scale structure, and the edge of the filtered image is smooth.
出处
《西安邮电大学学报》
2017年第3期39-43,共5页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金重点资助项目(61136002)
陕西省自然科学基金资助项目(2014JM8331
2014JQ5183
2014JM8307)
陕西省教育厅科学研究计划资助项目(2015JK1654)
关键词
图像滤波
引导图像滤波
动态和静态联合滤波
非凸优化
最小最优算法
image filtering, guided image filter, optimization, majorization-minimization algorithm dynamic and static combined filtering, non convex