期刊文献+

改进布谷鸟搜索算法在轧制规程优化中的应用 被引量:2

Application of the Improved Cuckoo Search Algorithm in Optimization of Rolling Procedure
下载PDF
导出
摘要 针对轧钢精轧过程负荷分配的优化问题,使用基于梯度的自适应布谷鸟搜索(GBAQCS)算法对轧钢精轧机组负荷分配进行了仿真优化试验。首先优化目标函数,确定约束条件,对GBAQCS算法进行了收敛性和稳定性分析;接着对轧钢精轧机组轧制规程进行了优化计算,并对该算法与经验负荷分配法在轧钢精轧机组的负荷分配问题上的计算结果进行了对比。对比结果表明,GBAQCS算法不仅具有良好的收敛性与稳定性,且能够使钢材经过各机架后拥有更加合理的出口厚度,轧制过程中对轧制力的设定也更加符合生产要求。GBAQCS算法既能充分发挥前几个机架的设备能力,提供较大的轧制力,又能使后几个机架针对板形、板厚依次减小轧制力,大大提升了对板形、板厚的优化效果,在负荷分配优化过程中更为合理地分配了轧制力,满足了出口厚度与板形要求。 Aiming at the optimization problem of load distribution in rolling process, the improved cuckoo search algorithm, the gradient - based adaptive quick cuckoo search ( GBAQCS) algorithm is used to accomplish the simulation optimization test for load distribution of rolling mill. Firstly,the objective function is optimized,and the constraints are determined; the convergence and stability analysis is conducted for GBAQCS algorithm, then the rolling procedure of the rolling mill is optimized and calculated, and compared with the calculation result obtained by experiential load distribution. The test results indicate that GBAQCS algorithm features excellent convergence and stability, and to make the output thickness of steel material more reasonable after passing each finishing rolling frame, the set point of the rolling force in the process is more conforming the production requirements. The GBAQCS algorithm fully exerts the equipment capability of front frames, provides larger rolling force, and also make subsequent frame successively reduce the rolling force based on the thickness of the steel plate, thus the optimization effect is greatly improved. In load distribution optimization, this makes the rolling force more reasonable to meet the exit thickness and the shape of the steel plate.
作者 陶雯 刘洋 李荣雨 TAO Wen LIU Yang LI Rongyu(College of Mathematics and Information Technology, Jiangsu Second Normal University,Nanjing 210013 ,China College of Computer Science and Technology, Nanjing Tech University,Nanjing 211816, China)
出处 《自动化仪表》 CAS 2017年第6期19-22,共4页 Process Automation Instrumentation
基金 江苏省教育厅自然科学基金资助项目(12KJB510007)
关键词 智能控制 自动化 负荷分配 布谷鸟搜索算法 自适应 轧制规程 约束条件 Intelligent control Automation Load distribution Cuckoo search algorithm Self - adaption Rolling schedule Constraint condition
  • 相关文献

参考文献2

二级参考文献22

  • 1贺兴时,李娜,杨新社,余兵.多目标布谷鸟搜索算法[J].系统仿真学报,2015,27(4):731-737. 被引量:17
  • 2Rigler G W.Improved rolling mill automation by means of advanced control techniques and dynamic simulation.IEEE Trans Ind Appl,1996,32(3):550
  • 3LedinJ 焦宗夏 王少萍 译.仿真工程[M].北京:机械工业出版社,2003..
  • 4Real time network-Rtnet//VMIC Product Summary.VMIC,1998
  • 5TMS320C6201/6701 Evaluation Module User's GuideTexas:Texas Instruments Incorporated,2002
  • 6Lim W H, Isa NAM. Two-layer particle swarm optimization with intelligent division of labor[J]. Engineering Applications of Artificial Intelligence, 2013,26(10): 2327-2348.
  • 7Yang X, Deb S. Cuckoo search via Levy flights [C]// World Congress on Nature and BiologicallyInspired Computing, Piscataway: IEEE Publications, 2009, 210-214.
  • 8Yang X, Deb S. Cuckoo search: Recent advances and applications [J]. Neural Comput andApplic, 2014,24(1): 169-174.
  • 9Valian E, Mohanna S, Tavakoli S. Improved Cuckoo Search Algorithm for Global Optimization[J]. International Journal of Communications and Information Technology, 2011, 1(1): 31-44.
  • 10Ong P, Adaptive cuckoo search algorithm for unconstrained optimization [J]. The ScientificWorld Journal、2014, 1-8.

共引文献14

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部