期刊文献+

轨形Gromov-Witten不变量沿光滑点的加权涨开公式 被引量:1

Weighted Blow-up of Orbifold Gromov-Witten Invariants Along Smooth Points
原文传递
导出
摘要 本文考虑,当一个紧辛轨形群胚(X,ω)沿着光滑点作加权涨开时,它的形如<α_1,…,α_m,[pt]>_(g,A)~X的轨形Gromov-Witten不变量的变化公式,其中[pt]∈H_(dR)^(2n)(X)是生成元,dimX=2n.我们证明了对于非零A∈H_2(|X|,Z),<α_1,…,α_m,[pt]>_(g,A)~X={<p~*a_1,...,p~*a_m,1_x_((-1/a_1))>_(g_1,pl(A)-e’)~xdimX=4,g≥0,∑((-1)g_1·2)/(2g_1+2)!<p~*a_1,...,p~*a_m,1_x_((-1/a_1))>_(g_2,pl(A)-e’)~xdimX=6,g≥0,<p~*a_1,...,p~*a_m,1_x_((-1/a_1))>_(g_1,pl(A)-e’)~xdimX≥8,g=0其中x是X沿一光滑点的权α=(α_1,…,α_n)的加权涨开,且α_1≥α_i,2≤i≤n. Abstract We study the change of orbifold Gromov-Witten invariants of the form 〈α1…,am,[pt]g,A^x〉of a compact symplectic orbifold groupoid (X, w) under weighted blow-up along smooth points. Here [pt]∈HdR^2n(X)is the generator, dimX=2n. We prove that for nonzero A∈H2(|X|,Z),〈a1…,am,[pt]g,A^x〉……where X is the weight a = (al,..., an) blow-up of X along a smooth point, and a1≥ai,2≤i≤n.
作者 杜承勇
出处 《数学学报(中文版)》 CSCD 北大核心 2017年第4期689-704,共16页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11501393) 四川省教育厅资助科研项目(15ZB0027)
关键词 加权涨开 轨形Gromov-Witten不变量 加权涨开公式 weighted blow-up orbifold Gromov Witten invariant weighted blow-up formula
  • 相关文献

参考文献2

二级参考文献19

  • 1Abramovich, D., Fantechi, B.: Orbifold techniques in degeneration formulas, Preprint, Math. AG/1103.5132.
  • 2Adem, A., Leida, Y., Ruan, J.: Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007.
  • 3Chen, B., Li, A., Sun, S., et al.: Relative Orbifold Gromov-Witten Theory and Degeneration Formula, Preprint, Math. SG/1110.6803.
  • 4Chen, B., Li, A., Wang, B.: Virtual neighborhood technique for pseudo-holomorphic spheres, Preprint, Math. GT/1306.3276.
  • 5Chen, W., Ruan, Y.: A new cohomology theory of orbifold. Comm. Math. Phys., 248(1), 1-31 (2004).
  • 6Chen, W., Ruan, Y.: Orbifold quantum cohomology. Cont. Math., 310, 25-86.
  • 7Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariants. Topology, 38, 933-1048 (1999).
  • 8Godinho, L.: Blowing up symplectic orbifolds. Ann. Global Anal. Geom., 20, 117—162 (2001).
  • 9Hu, J.: Gromov-Witten invariants of blow-ups along points and curves. Math. Z., 233, 709-739 (2000).
  • 10Hu, J., Li, T., Ruan, Y.: Birational cobordism invariance of uniruled symplectic manifolds. Invent. Math., 172, 231-275 (2008).

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部