期刊文献+

基于微分进化算法的消息传播网构建

Construction of Information Dissemination Network Based on Differential Evolution
下载PDF
导出
摘要 某事件发生时,除消息以广播的方式通知相关人员外,还需依赖个体之间的责任关系传播,消除信息孤岛问题。社会网络(Social Network)中的个体之间存在复杂的责任关系,针对该问题,以滑坡事件发生时为例,创建带责任制的消息传播网模型,并采用微分进化算法评估关系属性和来往交流等因素对责任关系的影响权重,同时加入责任弱化(Responsibility Decline,RD)效应模拟消息传播过程。结果表明,关系属性和面对面交流对责任关系的影响较大,紧急消息的传播过程也会受距离的影响。实现了一对多的责任分派机制,多对多的责任分派方式则有待进一步研究。 Besides by the way of broadcast the information should he disseminated among individuals with responsibility for avoiding occurrence that someone dose not get informed while in a landslide. There exists complex relationship with responsibility with each other for which we constructed a model of network of information dissemination with accountability and evaluated, with Differential Evolution algorithm, different influence weights of emotional relationship, frequency of communications and other factors. Meanwhile,the RD was involved in the procedure of simulating information dissemination. Conclusions show that emotional relationship and face-to-face communication have greater effect on responsibility. Also the dissemination of emergency message is affected by the distances among people. The way of one-to-many to disseminate information comes out but the research for the way of many-to many is the next step.
作者 邓柯 闫述
出处 《软件导刊》 2017年第7期5-10,共6页 Software Guide
基金 国家自然科学基金项目(41174090)
关键词 消息传播网 责任关系 影响权重 微分进化算法 Information Dissemination Network Relationship With Responsibility Influence Weight Differential Evolution
  • 相关文献

参考文献1

二级参考文献23

  • 1Goldenberg J,Libai B,Muller E.Talk of the network:Acomplex systems look at the underlying process of word-of-mouth[J].Marketing Letters,2001,12(3):211-223.
  • 2Young H P.The diffusion of innovations in social networks[G]//Economy as an Evolving Complex System.New York:Oxford University,2005:267-282.
  • 3Kempe D,Kleinberg J,Tardos e.Maximizing the spread ofinfluence through a social network[C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and DataMining.New York:ACM,2003:137-146.
  • 4Saito K,Kimura M,Ohara K,et al.Learning continuous-time information diffusion model for social behavioral data analysis[G]//Advances in Machine Learning.Berlin:Springer,2009:322-337.
  • 5Guille A,Hacid H.A predictive model for the temporaldynamics of information diffusion in online social networks[C]//Proc of the 21st Int Conf Companion on World WideWeb.New York:ACM,2012:1145-1152.
  • 6Yang J,Counts S.Predicting the speed,scale,and range ofinformation diffusion in twitter[C]//Proc of the 4th Int AAAI Conf on Weblogs and Social Media.Menlo Park:AAAI,2010:355-358.
  • 7Lagnier C,Denoyer L,Gaussier E,et al.Predictinginformation diffusion in social networks using content anduser's profiles[G]//Advances in Information Retrieval.Berlin;Springer,2013:74-85.
  • 8Saito K,Ohara K,Yamagishi Y,et al.Learning diffusionprobability based on node attributes in social networks[G]//Foundations of Intelligent Systems.Berlin:Springer, 2011:153-162.
  • 9Spiro E S,Irvine C A,DuBois C L,et al.Waiting for aretweet : Modeling waiting times in information propagation[EB/OL].(2012-12-07)[2013-05-20].http://snap.Stanford.edu/social2012/papers/spiro-dubois-butts.pdf.
  • 10Goyal A,Bonchi F,Lakshmanan L V S.Learning influenceprobabilities in social networks[C]//Proc of the 3rd ACMInt Conf on Web Search and Data Mining.New York:ACM,2010:241-250.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部