期刊文献+

一个带有交叉扩散的捕食-被捕食模型的动力学性质

Dynamics of a Predator-prey Model with Cross Diffusion
下载PDF
导出
摘要 对一个带有自扩散和交叉扩散的捕食-被捕食模型进行研究,分析了该模型平衡点的局部以及全局稳定性,研究了当系统同时考虑自扩散和交叉扩散影响时稳定性的变化。证明了交叉扩散系数的变化对于该模型的局部和全局稳定性有重要的影响,并且证明了由交叉扩散导致的图灵失稳的多种情形。 In this paper,apredator-prey model with self-diffusion and cross-diffusion is studied.The local and global stability of the system's equilibrium are studied,and the effects of self-diffusion and cross-diffusion on the stability are analyzed.The analysis shows that the cross-diffusion can play an important role in the local and global stability of the system.Furthermore,we found that the cross diffusion can cause the Turing instability in a variety of situations.
作者 汪鹏飞 于恒国 WANG Peng-fei YU Heng guo(School of Electro Mechanical and Information Technology, Yiwu Industrial and Commercial College ,Yiwu 322000,China College of Mathematics Information Science, Wenzhou University ,Wenzhou 325035,China)
出处 《滨州学院学报》 2017年第2期38-44,共7页 Journal of Binzhou University
基金 国家自然科学基金资助项目(31570364)
关键词 捕食-被捕食模型 交叉扩散 稳定性 图灵失稳 predator-prey model cross diffusion stability Turing instability
  • 相关文献

参考文献2

二级参考文献16

  • 1Zhang Zhengqiu Wang ZhichengDept. of Appl. Math.,Hunan Univ.,Changsha 410082..EXISTENCE OF PERIODIC SOLUTIONS OF PLANAR SYSTEMS WITH FOUR DELAYS[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(4):355-363. 被引量:3
  • 2王全义.周期解的存在性、唯一性与稳定性[J].数学年刊(A辑),1994,1(5):537-545. 被引量:38
  • 3伏升茂,温紫娟,宋雪梅.互惠Shigesada-Kawasaki-Teramoto模型整体解的存在性和稳定性[J].兰州大学学报(自然科学版),2006,42(4):121-126. 被引量:6
  • 4叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 5KOOIJ R E, ZEGELING A. Qualitative properties of two-dimensional predator-prey system[J]. Nonlinear Analysis TMA, 1997, 29(6): 693-715.
  • 6MURRY J. Mathmatical biology I : an introduction: Interdisciplinary Applied Mathmatics Vol 17[M]. New York: Springer, 2002.
  • 7HESS P. Periodic-parabolic boundary value problem and positivity: Pitman Res Notes Math Ser 247[M], New York: Longman Scientific and Technical, 1991.
  • 8TINEO A. Permanence of a large class of periodic predator-prey system[J]. J Math Anal Appl, 2000, 241(1): 83-91.
  • 9CHEN J, ZHANG H. The qualitative analysis of two species predator-prey model with Holling's type Ⅲ function response[J]. Appl Math Mech, 1986, 7(1): 77-86.
  • 10FREEDMAN H I. Deterministic mathematical models in population ecology[M]. Edmonton: HIFR Consulting Ltd, 1987.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部