期刊文献+

Cold water swimming pretreatment reduces cognitive deficits in a rat model of traumatic brain injury 被引量:4

Cold water swimming pretreatment reduces cognitive deficits in a rat model of traumatic brain injury
下载PDF
导出
摘要 A moderate stress such as cold water swimming can raise the tolerance of the body to potentially injurious events. However, little is known about the mechanism of beneficial effects induced by moderate stress. In this study, we used a classic rat model of traumatic brain injury to test the hypothesis that cold water swimming preconditioning improved the recovery of cognitive functions and explored the mechanisms. Results showed that after traumatic brain injury, pre-conditioned rats(cold water swimming for 3 minutes at 4℃) spent a significantly higher percent of times in the goal quadrant of cold water swim, and escape latencies were shorter than for non-pretreated rats. The number of circulating endothelial progenitor cells was significantly higher in pre-conditioned rats than those without pretreatment at 0, 3, 6 and 24 hours after traumatic brain injury. Immunohistochemical staining and Von Willebrand factor staining demonstrated that the number of CD34~+ stem cells and new blood vessels in the injured hippocampus tissue increased significantly in pre-conditioned rats. These data suggest that pretreatment with cold water swimming could promote the proliferation of endothelial progenitor cells and angiogenesis in the peripheral blood and hippocampus. It also ameliorated cognitive deficits caused by experimental traumatic brain injury. A moderate stress such as cold water swimming can raise the tolerance of the body to potentially injurious events. However, little is known about the mechanism of beneficial effects induced by moderate stress. In this study, we used a classic rat model of traumatic brain injury to test the hypothesis that cold water swimming preconditioning improved the recovery of cognitive functions and explored the mechanisms. Results showed that after traumatic brain injury, pre-conditioned rats(cold water swimming for 3 minutes at 4℃) spent a significantly higher percent of times in the goal quadrant of cold water swim, and escape latencies were shorter than for non-pretreated rats. The number of circulating endothelial progenitor cells was significantly higher in pre-conditioned rats than those without pretreatment at 0, 3, 6 and 24 hours after traumatic brain injury. Immunohistochemical staining and Von Willebrand factor staining demonstrated that the number of CD34~+ stem cells and new blood vessels in the injured hippocampus tissue increased significantly in pre-conditioned rats. These data suggest that pretreatment with cold water swimming could promote the proliferation of endothelial progenitor cells and angiogenesis in the peripheral blood and hippocampus. It also ameliorated cognitive deficits caused by experimental traumatic brain injury.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第8期1322-1328,共7页 中国神经再生研究(英文版)
基金 supported by a grant from the Incubation Project of Natural Science Foundation of Tianjin Medical University General Hospital in China,No.303071901401 the Natural Science Foundation of Tianjin of China,No.13JCZDJC30800 the National Natural Science Foundation of China,No.81271361 and 81330029
关键词 nerve regeneration cold water swimming cognitive deficits endothelial progenitor cells angiogenesis neural repair stress Morriswater maze fluid percussion injury model CD34 Von Willebrand factor neural regeneration nerve regeneration cold water swimming cognitive deficits endothelial progenitor cells angiogenesis neural repair stress Morriswater maze fluid percussion injury model CD34 Von Willebrand factor neural regeneration
  • 相关文献

同被引文献25

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部