期刊文献+

绝对差值排序的全变分低剂量CT重建算法 被引量:1

Total Variation Algorithm Based on Rank-Ordered Absolute Differences for Low-lose CT Reconstruction
下载PDF
导出
摘要 针对传统全变分(Total Variation,TV)低剂量CT(Computed Tomography,CT)算法在重建图像时出现阶梯效应和模糊图像边缘的问题,提出了基于绝对差值排序(Rank-Ordered Absolute Differences,ROAD)和中值先验(Median Prior,MP)模型的TV低剂量CT重建算法.首先采用ROAD对传统TV模型中的扩散函数进行改进,然后将改进后的TV模型与MP模型结合得到新的惩罚项,最后将该惩罚项应用于基于惩罚加权最小二乘重建算法从而构造新的目标函数.实验结果表明,新算法不仅可以抑制阶梯伪影的产生,还能够很好地保留图像边缘细节信息. A new total variation algorithm based od and the median prior (MP) model for lowon the rank-ordered absolute differences (ROAD) methlose CT reconstruction was proposed to overcome the drawback of the traditional total variation (TV) algorithm, which can result in the staircase effect and blur the image edge for the low-dose computed tomography (CT). The ROAD was applied to improve the diffusion function of the traditional TV model at first. Then, combining with this TV model, a new penalty item was formulated with the improved MP model. At last, this new item was applied to estab- lish the new objective {unction based on the penalized weighted least square reconstruction Mgorithm. The experiment results illustrate that the new algorithm can reducing staircase artifacts, while can well preserve image details and edges.
出处 《中北大学学报(自然科学版)》 北大核心 2017年第4期498-504,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61271357) 山西省自然科学基金资助项目(2015011046) 中北大学2013年校科学基金资助项目
关键词 低剂量CT 全变分 阶梯效应 中值先验 绝对差值排序 low-dose computed tomography total variation staircase effect median prior rank-ordered absolute differences
  • 相关文献

参考文献5

二级参考文献67

  • 1Rahmim A,Zaidi H.PET versus SPECT:strengths,limitations and challenges[J].Nucl Med Commun,2008,29(3):193 -207.
  • 2Lange K.Convergence of EM image reconstruction algorithms with Gibbs smoothness[J].IEEE Trans Med Imaging,1990,9(4):439-446.
  • 3Geman S,Geman D.Stochastic relaxation,Gibbs distribution,and the Bayesian restoration of images[J].IEEE Trans Patt Analy and Mach Intell,1984,26(2):721-741.
  • 4Li SZ.Markov Random Field Modeling in Image Analysis[M].Tokyo:Springer-Verlag,2001.
  • 5Gindi G,Lee M,Rangarajan A,et al.Bayesian reconstruction of functional images using anatomical information as priors[J].IEEE Trans Med Imaging,1993,12(4):670-680.
  • 6Chlewicki W,Hermansen F,Hansen SB,et al.Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior[J].Phys Med Biol,2004,49(20):4717-4730.
  • 7Comtat C,Kinahan PE,Fessler JA,et al.Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels[J].Phys Med Biol,2002,47 (1):1-20.
  • 8Bowsher JE,Johnson VE Turkington TG,et al.Bayesian reconstruction and use of anatomical a priori information for emission tomography[J].IEEE Trans Med Imaging,1996,15(5):673-686.
  • 9Bruyant PP,Gifford HC Gindi G,et al.Numerical observer study of MAP-OSEM ragularization methods with anatomicalpriors for lesion detection in/sup 67/Ga images[J].IEEE Trans Nucl Sci,2004,51(1):193 -197.
  • 10Vogel WV,Oyen WJ,Barentsz JO,et al.PET/CT:Panacea,redundancy,or something in between?[J].J Nucl Med,2004,45(1 suppl 1):15S -24S.

共引文献15

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部