期刊文献+

云计算环境下基于改进GSO的目标主机选择算法

A Selection Algorithm of Destination Host Based on Improved Glowworm Swarm Optimization Algorithm in Cloud Computing Environment
下载PDF
导出
摘要 目标主机的选择是虚拟机动态迁移过程中的重要阶段,是实现负载均衡的关键。针对基本萤火虫算法存在的精度不高、收敛较慢的问题,提出了一种改进的萤火虫优化算法,用于解决虚拟机迁移时虚拟机和目标物理主机的映射问题,实现多目标最优求解。该算法通过引入步长调整因子,能够动态调整移动步长,克服了步长过大或过小导致的精度不高、后期收敛较慢的缺点。全面考虑物理主机负载指标,建立负载均衡模型,将萤火虫算法中个体与节点资源相对应,利用萤火虫发光机制寻优求解,以实现目标主机的优化选择。仿真实验表明,该算法能够快速完成目标主机的选择,有效平衡系统资源,实现数据中心负载均衡。 The selection of destination host is an important stage in the dynamic migration of virtual machines,and is the key to realize load balancing. In order to overcome the shortcomings of basic glowworm swarm optimization algorithm including low accuracy and slow convergence speed,an improved glowworm swarm optimization algorithm is proposed to solve the mapping problem between the virtual machine and the target physical host when the virtual machine is migrated,and the multiobjective optimal solution is realized. By introducing the step adjustment factor,the algorithm can dynamically adjust the moving step and overcome the shortcomings of low accuracy and slow convergence speed caused by too large step or too small step. Considering the physical load index,the load balancing model is established,and the individual and node resources in the improved glowworm swarm optimization algorithm are matched with each other,and the optimal selection of the destination host is realized by using the luminous mechanism of fireflies. The simulation experiment shows that the improved algorithm can select the destination host quickly,balance the system resource effectively and realize the load balancing of data center.
出处 《四川理工学院学报(自然科学版)》 CAS 2017年第5期51-56,共6页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 安徽省高校自然科学研究重点项目(KJ2016A778 KJ2016A781) 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016586) 安徽省质量工程项目(2016jyxm1039)
关键词 云计算 萤火虫群优化算法 动态步长 负载均衡 目标主机选择 虚拟机 cloud computing glowworm swarm optimization algorithm dynamic step load balancing destination host selection virtual machine
  • 相关文献

参考文献11

二级参考文献119

  • 1孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 2唐丹,金海,张永坤.集群动态负载平衡系统的性能评价[J].计算机学报,2004,27(6):803-811. 被引量:28
  • 3陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 4Leavitt N. Is Cloud Computing Really Ready for Prime Time? [J]. IEEE Computer Society Press, 2009,42 ( 1 ) :15 20.
  • 5Armbrust M, Fox A, Grith R, et al. Above the clouds:A Berkeley View of Cloud Computing[R]. UCB/EECS-2009-28. Berkeley, USA:Electrical Engineering and Computer Sciences, University of California at Berkeley, 2009.
  • 6Vaquero L, Rodero-Marino L, Caceres J, et al. A break in the clouds: towards a cloud definition [J]. SIGCOMM Computer Communication Review, 2009,39 ( 1 ) : 50-55.
  • 7Lenk A,Klems M, Nimis J, et al. What' s inside the Cloud? An Architectural Map of the Cloud Landscape[C]//Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing. 2009 : 23-31.
  • 8Amazon Web Services[EB/OL]. http://aws, amazon, corn/.
  • 9Hadoop[EB/OL]. http://hadoop, apache, org/core.
  • 10Dean J, Ghemawat S. MapReduce: Simplied data processing on large clusters[C]//Proceedings of the 6th Symposium on Operating Systems Design and Implementation. San Francisco, CA, 2004,11(18):137-150.

共引文献542

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部