摘要
The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm^2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.
The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm^2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.