期刊文献+

Stigmatic exudate in the Annonaceae:Pollinator reward,pollen germination medium or extragynoecial compitum? 被引量:4

Stigmatic exudate in the Annonaceae: Pollinator reward, pollen germination medium or extragynoecial compitum?
原文传递
导出
摘要 Although "dry-type" stigmas are widely re- garded as ancestral in angiosperms, the early-divergent family Annonaceae has copious stigmatic exudate. We evaluate three putative functions for this exudate: as a nutritive reward for pollinators; as a pollen germination medium; and as an extragynoecial compitum that enables pollen tube growth between carpels. Stigmatic exudate is fructose dominated (72.2%), but with high levels of glucose and sucrose; the dominance of hexose sugars and the diversity of amino acids observed, including many that are essential for insects, support a nutritive role for pollinators. Sugar concentration in pre-receptive flowers is high (28.2%), falling during the peak period of stigmatic receptivity (17.4%), and then rising again toward the end of the pistillate phase (32.9%). Pollen germination was highest in sugar concentrations 〈2%. Sugar concentrations during the peak pistillate phase therefore provide optimal osmolarity for pollen hydration and germination; subsequent changes in sugar concentration during anthesis reinforce protogyny (in which carpels mature before stamens), enabling the retention of concentrated exudate into the staminate phase as a pollinator food reward without the possibility of pollen germination. Intercarpellary growth of pollen tubes was confirmed: the exudate therefore also functions as a suprastylar extragynoecial compitum, overcoming the limitations of apocarpy. Although "dry-type" stigmas are widely re- garded as ancestral in angiosperms, the early-divergent family Annonaceae has copious stigmatic exudate. We evaluate three putative functions for this exudate: as a nutritive reward for pollinators; as a pollen germination medium; and as an extragynoecial compitum that enables pollen tube growth between carpels. Stigmatic exudate is fructose dominated (72.2%), but with high levels of glucose and sucrose; the dominance of hexose sugars and the diversity of amino acids observed, including many that are essential for insects, support a nutritive role for pollinators. Sugar concentration in pre-receptive flowers is high (28.2%), falling during the peak period of stigmatic receptivity (17.4%), and then rising again toward the end of the pistillate phase (32.9%). Pollen germination was highest in sugar concentrations 〈2%. Sugar concentrations during the peak pistillate phase therefore provide optimal osmolarity for pollen hydration and germination; subsequent changes in sugar concentration during anthesis reinforce protogyny (in which carpels mature before stamens), enabling the retention of concentrated exudate into the staminate phase as a pollinator food reward without the possibility of pollen germination. Intercarpellary growth of pollen tubes was confirmed: the exudate therefore also functions as a suprastylar extragynoecial compitum, overcoming the limitations of apocarpy.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2017年第12期881-894,共14页 植物学报(英文版)
基金 funded by grants from the Hong Kong Research Grants Council(776713) the University of Hong Kong Research Committee,both awarded to R.M.K.S.and C.C.P.
  • 引文网络
  • 相关文献

同被引文献76

引证文献4

二级引证文献7

;
使用帮助 返回顶部