期刊文献+

Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability 被引量:1

Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability
下载PDF
导出
摘要 Spinal cord injury(SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound(MRg FUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier(BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRg FUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRg FUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRg FUS blood spinal cord barrier opening. Then, in normal rats, MRg FUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles. Spinal cord injury(SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound(MRg FUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier(BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRg FUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRg FUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRg FUS blood spinal cord barrier opening. Then, in normal rats, MRg FUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期2045-2049,共5页 中国神经再生研究(英文版)
基金 supported by the University of Utah Radiology Neuroscience Initiative Pilot grant the Department of Neurosurgery pilot fund
关键词 focused ultrasound spinal cord magnetic resonance imaging CONTRAST-ENHANCED blood-spinalcord barrier focused ultrasound spinal cord magnetic resonance imaging contrast-enhanced blood-spinalcord barrier
  • 相关文献

同被引文献3

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部