期刊文献+

基于knee points的改进多目标人工蜂群算法 被引量:4

Improved multi-objective artificial bee colony algorithm based on knee points
下载PDF
导出
摘要 传统的人工蜂群算法(Artificial Bee Colony algorithm,ABC)及其在多目标上的扩展(Multi Objective Artificial Bee Colony algorithm,MOABC)存在着在高维、多峰函数情况下收敛速度变慢、后期容易陷入局部最优以及寻优精度丢失等问题。基于knee points提高收敛性和分布性的特点,设计了一种快速识别knee point的算法并将其应用到多目标人工蜂群算法中,提出了一种基于knee points的改进多目标人工蜂群算法(Kn MOABC)。算法在迭代过程中考虑pareto支配关系的同时,优先选择knee point作为下一代个体,极大地增强了算法的收敛速度,同时,在knee point识别算法中加入自适应的策略以保持良好的分布性。实验结果表明,Kn MOABC的性能优于三个最新的多目标人工蜂群对比算法。 There exist some problems that the traditional Artificial Bee Colony algorithm(ABC)and its extension in multi object(MOABC)has a slow convergence speed, easily falling into local minima, optimization accuracy lost and other issues under the condition of high dimension, multi peak function. Based on the characteristic of knee points that it can improve convergence and distribution, an algorithm that rapidly identificates the knee points is designed in this paper and applied to the MOABC, it proposes the improved Multi-Objective Artificial Bee Colony algorithm based on the strategy of Knee point(Kn MOABC). In the iterative process, the pareto dominating relation is taken into account firstly, and the knee points are selected as the individuals for next generation, which greatly enhances the convergence speed of the algorithm, at the same time, an adaptive strategy is added into the knee point recognition algorithm to ensure the distributivity of the algorithm. The experimental results show that the performance of Kn MOABC is better than that of the three latest multi-objective artificial bee colony algorithm.
作者 刘明辉 李炜
出处 《计算机工程与应用》 CSCD 北大核心 2018年第2期40-47,共8页 Computer Engineering and Applications
基金 国家科技支撑计划(No.2015BAK24B00)
关键词 多目标人工蜂群算法 高维多峰函数 KNEE POINTS 自适应识别策略 multi-objective artificial bee colony algorithm high-dimensional and multimodal functions knee points adaptive identification strategy
  • 相关文献

参考文献10

二级参考文献111

  • 1刘立佳,李相民,颜骥.解决高维多目标优化的分组进化算法[J].四川大学学报(工程科学版),2013,0(S1):118-122. 被引量:3
  • 2胡燕海,马登哲,叶飞帆.制造系统通用作业计划与蚁群算法优化[J].计算机集成制造系统,2005,11(1):104-108. 被引量:14
  • 3Seeley T D. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies [ M ]. Harvard University Press. Cambridge, Massachusetts, 1995
  • 4Teodorovic D, Dell'Orco M. Bee colony optimization-acooperative learning approach to complex transportation problems [ A ]. In: Praceedings of the 10th EWGT Meeting and 16th Mini EURO Conference[C], Poznan, 13 - 16 September, 2005
  • 5Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization [ A ]. In : Proceedings of the IEEE Swarm Intelligence Symposium[ C], 2006
  • 6Pham D T, Ghanbarzadeh A, Koc E, Otri S. The bees algorithma novel tool for complex optimisation problems[ A ]. In: Proeeedings of the Abstracts of 10th EWGT Meeting [ C ], Poznan,2006
  • 7Cherkassky V,Ma Y Q. A practical selection of SVM pa- rameters and noise estimation for SVM regression [J]. Neural Net works, 2004,17(1 ) : 113-126.
  • 8Taher Nikanam,Babak Amiri. An efficient hybrid approach based on PSO,ACO and k-means for cluster analysis[J]. Applied Soft Oomputing, 2011,10(1): 183-197.
  • 9Mohammad G, Matheus P F,Richard J. Ant colony optimi- zation as a feature selection method in the QSAR model- ing of anti-HIV-1 activities of 3-(3,5-dimethylbenzyD ura- cil derivatives using MLR,PLS and SVM regressions[J]. Ohemometrics and Intelligent Laboratory Systems,2009,98(2):123-129.
  • 10Alper U, Alper M, Ratna Babu C. mr^2 PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification[J]. Information Sciences, 2011,181 (20):4625-4641.

共引文献265

同被引文献31

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部