摘要
We show that the asymptotics of solutions to stationary Navier Stokes equations in 4, 5 or 6 dimensions in the whole space with a smooth compactly supported forcing are given by the linear Stokes equation. We do not need to assume any smallness condition. The result is in contrast to three dimensions, where the asymptotics for steady states are different from the linear Stokes equation, even for small data, while the large data case presents an open problem. The case of dimension n = 2 is still harder.
We show that the asymptotics of solutions to stationary Navier Stokes equations in 4, 5 or 6 dimensions in the whole space with a smooth compactly supported forcing are given by the linear Stokes equation. We do not need to assume any smallness condition. The result is in contrast to three dimensions, where the asymptotics for steady states are different from the linear Stokes equation, even for small data, while the large data case presents an open problem. The case of dimension n = 2 is still harder.
基金
supported in part by grant DMS(Grant No.1362467)from the National Science Foundation
the first author is supported in part by DMS(Grant No.1600779)