摘要
In the recent work, we have developed a decay framework in general Lp critical spaces and established optimal time-decay estimates for barotropic compressible Navier-Stokes equations. Those decay rates of Lq-Lr type of the solution and its derivatives are available in the critical regularity framework, which were exactly firstly observed by Matsumura & Nishida, and subsequently generalized by Ponce for solutions with high Sobolev regularity. We would like to mention that our approach is likely to be effective for other hyperbolic/parabolic systems that are encountered in fluid mechanics or mathematical physics. In this paper, a new observation is involved in the high frequency, which enables us to improve decay exponents for the high frequencies of solutions.
In the recent work, we have developed a decay framework in general Lp critical spaces and established optimal time-decay estimates for barotropic compressible Navier-Stokes equations. Those decay rates of Lq-Lr type of the solution and its derivatives are available in the critical regularity framework, which were exactly firstly observed by Matsumura & Nishida, and subsequently generalized by Ponce for solutions with high Sobolev regularity. We would like to mention that our approach is likely to be effective for other hyperbolic/parabolic systems that are encountered in fluid mechanics or mathematical physics. In this paper, a new observation is involved in the high frequency, which enables us to improve decay exponents for the high frequencies of solutions.
基金
Supported by the National Natural Science Foundation of China(Grant No.11471158)
the Program for New Century Excellent Talents in University(Grant No.NCET-13–0857)
the Fundamental Research Funds for the Central Universities(Grant No.NE2015005)