期刊文献+

深度学习空域隐写分析的预处理层 被引量:3

Preprocessing Layer in Spatial Steganalysis Based on Deep Learning
下载PDF
导出
摘要 在一种具有预处理层的卷积神经网络模型基础上,对其高通滤波器预处理层进行改进,采用一组导数滤波器以获得线性及非线性残差图像,并对残差图像进行量化和截断操作,从而更加有效地提取图像特征.实验结果表明,与已有方法相比,尽管所提的3种方法对各空域隐写算法及各嵌入率下的性能表现并不一致,但这些方法均能显著提升隐写分析检测率.对于检测嵌入率为0.4 bpp的S-UNIWARD隐写算法,检测正确率提高了6%. In this paper, we propose some preprocessing methods to improve the perfor- mance of a well-designed convolution neural network based on the preprocessed layer. In the proposed methods, linear and nonlinear residuals are obtained by employing a set of derivative filters, and then quantized and truncated for the effective extraction. Experi- mental results show that the detection performances with the three proposed preprocessing methods are all improved. Although the improvements are not consistence under different spatial steganographic algorithms and different embedding rates. The detection perfor- mance is 6% better than the prior work for S-UNIWARD at 0.4bpp.
作者 史晓裕 李斌 谭舜泉 SHI Xiao-yu1,3, LI Bin1,3, TAN Shun-quan2,3(1 College of Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, China 2College of Computer Science and Boftware Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, China 3Shenzhen Key Lab of Media Security, Shenzhen University, Shenzhen 518060, Guangdong Province, Chin)
出处 《应用科学学报》 CAS CSCD 北大核心 2018年第2期309-320,共12页 Journal of Applied Sciences
基金 国家自然科学基金(No.61572329 No.61772349)资助
关键词 隐写分析 卷积神经网络 导数滤波器 steganalysis, convolutional neural network, derivative filters
  • 相关文献

同被引文献16

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部