摘要
A switched linear quadratic(LQ) differential game over finite-horizon is investigated in this paper. The switching signal is regarded as a non-conventional player, afterwards the definition of Pareto efficiency is extended to dynamics switching situations to characterize the solutions of this multi-objective problem. Furthermore, the switched differential game is equivalently transformed into a family of parameterized single-objective optimal problems by introducing preference information and auxiliary variables. This transformation reduces the computing complexity such that the Pareto frontier of the switched LQ differential game can be constructed by dynamic programming. Finally, a numerical example is provided to illustrate the effectiveness.
基金
supported by the National Natural Science Foundation of China under Grant No.61773098
the 111 Project under Grant No.B16009