摘要
国内汽车座椅的噪声检测主要是在环境噪音不超过30 dB的消声室中进行的,这种方法的缺陷在于消声室的建造费用高、检测效率低以及操作者的技能影响测量精度。针对上述缺陷,提出了一种基于奇异值分解的随机共振联合去噪方法,该方法可以去除外界噪声的干扰,有效地提取座椅振动噪声的特征信号,为后续振动噪声的在线评定奠定基础。仿真和实例结果均表明:基于奇异值分解的随机共振联合去噪方法比单独使用奇异值分解与多稳随机共振方法检测到的信号频率更准确,可以增强信号的幅值,从而更好地检测出被噪声淹没的微弱信号。
The domestic auto seat noise detecting is mainly in anechoic chamber in which require the environment of noise does not exceed 30 dB. However,this method of defect is building an echoic chamber such a high cost,low detection efficiency,operator skill affect measurement accuracy. In view of the above defects,this paper proposes a stochastic resonance based on singular value decomposition of on-line detection method of automotive noise signal,can filter out outside noise interference,effectively extract the seat vibration noise characteristic signal,for subsequent online assessment laid a solid foundation. Simulation and example results show that the singular value decomposition of stochastic resonance is denoising method than using singular value decomposition and more stable stochastic resonance method detects the signal frequency is more accurate,can enhance the amplitude of the signal,to better detect the weak signal submerged by noise.
作者
武海强
刘宝华
Wu Haiqiang;Liu Baohua(Parallel Robot and Mechatronic System Laboratory ,Yanshan University,Qinhuangdao 066004, Hebei, Chin)
出处
《现代制造工程》
CSCD
北大核心
2018年第5期118-124,97,共8页
Modern Manufacturing Engineering
关键词
汽车座椅噪声
奇异值分解
随机共振
检测系统
auto seat noise
Singular Value Decomposition(SVD)
stochastic resonance
detection system