期刊文献+

An integrated approach for dynamic traffic routing and ramp metering using sliding mode control 被引量:2

An integrated approach for dynamic traffic routing and ramp metering using sliding mode control
原文传递
导出
摘要 The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands. The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands.
出处 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第2期116-128,共13页 交通运输工程学报(英文版)
关键词 Highway traffic simulation Macroscopic model Sliding mode control Dynamic traffic routing On-ramp metering Integrated control Highway traffic simulation Macroscopic model Sliding mode control Dynamic traffic routing On-ramp metering Integrated control
  • 相关文献

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部