期刊文献+

R744直接接触冷凝制冷循环性能分析 被引量:4

Performance analysis on R744 direct contact condensation refrigeration cycle
下载PDF
导出
摘要 对R717循环辅助过冷、R744主循环制冷压缩机排出的气体与R744过冷液直接接触冷凝的R717/R744-DCC制冷循环的热力性能进行分析,得出:R717/R744-DCC直接接触冷凝制冷循环存在最佳的R744主循环冷凝温度,并获得最优的性能系数和最低的R717冷凝器散热量。R744主循环过冷液体的过冷度增大,最优的性能系数降低,最低R717冷凝器散热量增大,对应的R744主循环冷凝温度升高,R744蒸发器的质量流量减少。与常规R717/R744复叠式制冷循环的热力性能比较,在相同的运行工况和最佳R744主循环冷凝温度下,R717/R744-DCC直接接触冷凝制冷循环最优性能系数提高了5.2%,最低R717冷凝器散热量减少了1.6%。R744主循环冷凝温度在-10~8℃范围内,R717/R744-DCC直接接触冷凝制冷循环R744蒸发器的制冷剂质量流量减少了1.75%~2.61%,R717冷凝器的制冷剂流量减少了0.51%~0.82%。 The performances of R717/R744-DCC refrigeration cycle, the R744 gas discharged from R744 compressor contacts directly with the R744 super-cooled liquid provided auxiliary super cooling by R717 refrigeration cycle, are analyzed. The following conclusions are obtained. The optimum condensing temperatures of R744 main cycle exist in the R717/R744-DCC refrigeration cycle, and at the optimum condensation temperatures, the maximum coefficient of performance and minimum R717 condenser heat load are obtained. With the increasing of super cooling degree of R744 main cycle supercooled liquid, the maximum coefficient of performance reduces, the minimum R717 condenser heat load increases, the condensation temperatures of R744 main cycle increases, and the refrigerant mass flow rate of R744 evaporator decreases. Meanwhile, compared with that of R717/R744 cascade refrigeration cycle, at the same operating conditions and the optimum R744 main cycle condensing temperatures, the maximum coefficient of performance of R717/R744-DCC cycle increases 5.2%, and the minimum R717 condenser heat load reduces 1.6%. Furthermore, in the range of-10—8℃ condensation temperatures of R744 main cycle, the mass flow rate of R744 evaporator of R717/R744-DCC refrigeration cycle reduces 1.75%—2.61%,and the mass flow rate of R717 condenser of R717/R744-DCC refrigeration cycle reduces about 0.51%—0.82%.
作者 宁静红 刘圣春 NING Jinghong;LIU Shengchun(Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China)
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第5期2049-2056,共8页 CIESC Journal
基金 国家自然科学基金项目(51376137)~~
关键词 R744气体 R744过冷液体 直接接触冷凝 R717辅助过冷 制冷循环 热力性能 R744 gas R744 super-cooled liquid direct contact condensation R717 assisted supercooling refrigeration cycle thermal performance
  • 相关文献

参考文献7

二级参考文献51

  • 1JunJie Yan, XinZhuang Wu,DaoTong Chong.Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water[J].Science China(Technological Sciences),2009,52(6):1493-1501. 被引量:7
  • 2王景刚,马一太,魏东,王侃宏.CO_2跨临界双级压缩带膨胀机制冷循环研究[J].制冷学报,2001,22(2):6-11. 被引量:34
  • 3齐涛,沈自求.垂直管内不互溶液滴群直接接触汽化传热[J].高校化学工程学报,1996,10(3):232-238. 被引量:6
  • 4周兴东,马学虎,兰忠,宋天一.滴状冷凝强化含不凝气的蒸气冷凝传热机制[J].化工学报,2007,58(7):1619-1625. 被引量:20
  • 5Lorentzen G.The use of natural refrigerants:A complete solution to the CFC/HCFC predicament[J].International Journal of Refrigeration,1995,18 (3):190-197.
  • 6Kitzmiller W R.Advantages of CO2-Ammonia system for low-temperature refrigeration[J].Power,1932(1):92-94.
  • 7Pettersen A J,Jakobsen A.A dry ice slurry system for low temperature refrigeration[C]//International Symposium on Refrigeration in Sea Transport Today and in the Future.Gdansk,Poland,1994:10-18.
  • 8Kim S G,Kim M S.Experiment and simulation on the perfonnance of an autocascade refrigeration system using carbon dioxide as a refrigerant[J].International Journal of Refrigeration,2002,25(11):1093-1101.
  • 9Park S N,Kim M S.Performance of autocascade refrigeration system using carbon dioxide and R134a[C]//Natural Working Fluids 1998,Proceedings of the IIR-Gustav Lorentzen Conference.Oslo,Norway,1998:311-320.
  • 10Khalid A,Abdul Sattar K,Mohammed K.Experimental and computer performance study of an automotive air conditioning system with alternative refrigerants[J].Energy Conversion and Management,2003,44 (1):2959-2976.

共引文献48

同被引文献33

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部