摘要
稀疏傅里叶变换时延估计具有较低的运算时间复杂度,但在低信噪比时无法准确估计出时延。针对稀疏傅里叶变换时延估计在噪声干扰下时延估计精度下降的缺点,提出了基于小波降噪的稀疏傅里叶变换时延估计算法。算法利用小波降噪方法处理接收到的信号,再对降噪后的信号进行稀疏傅里叶变换广义相关,通过检测相关函数的谱峰得到估算的时延值。实验仿真以及对实测数据的验证均表明,在低信噪比条件下,基于小波降噪的稀疏傅里叶变换时延估计算法在保证数据高处理速度的同时,具有较好的抗噪性以及较高的时延估值精确度。
Sparse Fourier transform delay estimation has a lower computational time complexity, but it can not accurately estimate the delay at low signal to noise ratio(SNR). In order to overcome the shortcomings of time delay estimation of sparse Fourier transform under noise interference, a new algorithm for time delay estimation of sparse Fourier transform based on wavelet denoising is proposed. The wavelet denoising method was used to process the received signal, and then the denoised signal was subjected to the sparse Fourier transform generalized correlation, and the estimated delay value was obtained by detecting the spectral peak of the correlation function. The experimental simulations and the verification of measured data all show that the improved algorithm has good noise immunity and high accuracy of time delay estimation while ensuring high data processing speed under low SNR condition.
作者
严天峰
张宇
魏楠
杨志飞
YAN Tian-feng;ZHANG Yu;WEI Nan;YANG Zhi-fei(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;High-Precislon Positioning Technology Compass Engineering Laboratory of Gansu Province, Lanzhou 730070, China;Radio Monitoring and Technology Center of Positioning Industry of Gansu Province, Lanzhou 750070, China)
出处
《测控技术》
CSCD
2018年第7期101-105,共5页
Measurement & Control Technology
基金
中国铁路总公司科技研究开发计划(2013G010-D)
甘肃省自然科学基金(1508RJZA071)
兰州交通大学校青年基金(2015008)
关键词
小波降噪
稀疏傅里叶变换
时延估计
估值精度
wavelet denoising
sparse Fourier transform (SFT)
time delay estimation
valuation accuracy