期刊文献+

Finite p-groups whose non-normal subgroups have few orders 被引量:2

Finite p-groups whose non-normal subgroups have few orders
原文传递
导出
摘要 Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use p^M(G) and p^m(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G, respectively. In this paper, we classify groups G such that M(G) 〈 2m(G) ^- 1. As a by-product, we also classify p-groups whose orders of non-normal subgroups are p^k and p^k+1. Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use p^M(G) and p^m(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G, respectively. In this paper, we classify groups G such that M(G) 〈 2m(G) ^- 1. As a by-product, we also classify p-groups whose orders of non-normal subgroups are p^k and p^k+1.
作者 Lijian AN
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第4期763-777,共15页 中国高等学校学术文摘·数学(英文)
基金 This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11471198, 11771258).
关键词 Finite p-groups meta-hamiltonian p-groups non-normal subgroups Finite p-groups meta-hamiltonian p-groups non-normal subgroups
  • 相关文献

参考文献4

二级参考文献23

  • 1An L J, Hu R F, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅳ). ArXiv:1310.5503.
  • 2Berkovich Y. Groups of Prime Power Order I. Berlin-New York: Walter de Gruyter, 2008.
  • 3Fang X G, An L J. A classification of finite metahamiltonian p-groups. ArXiv:1310.5509.
  • 4Hall M, Senior J K. The Groups of Order 2n (n≤ 6). New York: MacMillan, 1964.
  • 5Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967.
  • 6Qu H P, Xu M Y, An L J. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅲ). ArXiv:1310.5496.
  • 7Qu H P, Yang S S, Xu M Y, et al. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅰ). J Algebra,2012, 358: 178-188.
  • 8Qu H P, Zhao L B, Gao J, et al. Finite p-groups with a minimal non-abelian subgroup of index p (V). J Algebra Appl, submitted.
  • 9Tuan H F. A theorem about p-groups with abelian subgroup of index p. Acad Sinica Science Record, 1950, 3: 17-23.
  • 10Xu M Y. An Introduction to Finite Groups (in Chinese). Beijing: Science Press, 1987.

共引文献17

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部