期刊文献+

Effective Stacking Fault Energy in Face-Centered Cubic Metals 被引量:1

Effective Stacking Fault Energy in Face-Centered Cubic Metals
原文传递
导出
摘要 As a typical configuration in plastic deformations, dislocation arrays possess a large variation of the separation of the partial dislocation pairs in face-centered cubic(fcc) metals. This can be manifested conveniently by an effective stacking fault energy(SFE). The effective SFE of dislocation arrays is described within the elastic theory of dislocations and verified by atomistic simulations. The atomistic modeling results reveal that the general formulae of the effective SFE can give a reasonably satisfactory prediction for all dislocation types, especially for edge dislocation arrays. Furthermore, the predicted variation of the effective SFE is consistent with several previous experiments, in which the measured SFE is not definite, changing with dislocation density. Our approach could provide better understandings of cross-slip and the competition between slip and twinning during plastic deformations in fcc metals. As a typical configuration in plastic deformations, dislocation arrays possess a large variation of the separation of the partial dislocation pairs in face-centered cubic(fcc) metals. This can be manifested conveniently by an effective stacking fault energy(SFE). The effective SFE of dislocation arrays is described within the elastic theory of dislocations and verified by atomistic simulations. The atomistic modeling results reveal that the general formulae of the effective SFE can give a reasonably satisfactory prediction for all dislocation types, especially for edge dislocation arrays. Furthermore, the predicted variation of the effective SFE is consistent with several previous experiments, in which the measured SFE is not definite, changing with dislocation density. Our approach could provide better understandings of cross-slip and the competition between slip and twinning during plastic deformations in fcc metals.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第8期873-877,共5页 金属学报(英文版)
基金 support of this work by the Program of ‘‘One Hundred Talented People’’ of the Chinese Academy of Sciences (JBY) and the National Natural Science Foundation of China (Nos. 51571198, 51771206, 51331007, 51501197 and 51401207)
关键词 Face-centered cubic Stacking fault energy - Dislocation dissociation Atomistic modeling Face-centered cubic Stacking fault energy - Dislocation dissociation Atomistic modeling
  • 相关文献

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部