摘要
The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
研究离子交换树脂D301在强酸性浸出液中对六价钼的吸附行为。利用扫描电镜(SEM)、电子能谱(EDS)和拉曼光谱(Raman spectra)对树脂的吸附能力、吸附动力学和吸附机理进行详细考察。结果表明,D301离子交换树脂在强酸性浸出液中的对钼吸附量达到463.63 mg/g,吸附控制步骤为颗粒内扩散过程,当树脂粒度从0.9~1.2 mm减小到0.6~0.9 mm时,活化能则从25.47 k J/mol降低到20.38 k J/mol。解析实验表明,2 mol/L的氨水可以作为D301树脂的解吸液。动态上柱实验验证离子交换树脂D301在强酸性浸出液对钼直接提取的可行性。此外,逆流吸附可以改善动态连续吸附效果。
基金
Projects(21376251,21406233) supported by the National Natural Science Foundation of China