摘要
Objective: Due to the special anatomical structure and pathophysiological mechanism of the central nervous system (CNS), there is a big difference between the repair of brain injury and other systems of the body. More and more evidence shows that targetedly reducing the autoimmune response of brain tissue without affecting the immune function in other parts of the body will be the best optimized treatment for brain injury. Data Sources: This review was based on data in articles published in PubMed up to June 5,2017, with the following keywords: "immune tolerance", "traumatic brain injury", and "central nervous system". Study Selection: Original articles and critical reviews on immune tolerance and brain damage were selected for this review. References of the retrieved articles were also screened to search for potentially relevant papers. Results: The CNS is isolated from the immune system through the blood-brain barrier. After brain injury, brain antigens are released into the systemic circulation to induce damaging immune responses. Immune tolerance can effectively reduce the brain edema and neurological inflammatory response after brain injury, which is beneficial to the recovery of neurological function. The clinical application prospect and theoretical research value of the treatment of immune tolerance on traumatic brain inj ury (TBi) is worth attention. Conclusions: The establishment of immune tolerance mechanism has a high clinical value in the treatment of TBI. It opens up new opportunities for the treatment of brain damage.
Objective: Due to the special anatomical structure and pathophysiological mechanism of the central nervous system (CNS), there is a big difference between the repair of brain injury and other systems of the body. More and more evidence shows that targetedly reducing the autoimmune response of brain tissue without affecting the immune function in other parts of the body will be the best optimized treatment for brain injury. Data Sources: This review was based on data in articles published in PubMed up to June 5,2017, with the following keywords: "immune tolerance", "traumatic brain injury", and "central nervous system". Study Selection: Original articles and critical reviews on immune tolerance and brain damage were selected for this review. References of the retrieved articles were also screened to search for potentially relevant papers. Results: The CNS is isolated from the immune system through the blood-brain barrier. After brain injury, brain antigens are released into the systemic circulation to induce damaging immune responses. Immune tolerance can effectively reduce the brain edema and neurological inflammatory response after brain injury, which is beneficial to the recovery of neurological function. The clinical application prospect and theoretical research value of the treatment of immune tolerance on traumatic brain inj ury (TBi) is worth attention. Conclusions: The establishment of immune tolerance mechanism has a high clinical value in the treatment of TBI. It opens up new opportunities for the treatment of brain damage.