摘要
根据多元复合析出相的固溶析出理论和经典形核长大动力学理论,计算了Ti-V-Mo复合微合金钢中(Ti,V,Mo)C在奥氏体(γ)和铁素体(α)中沉淀析出的形核参量、析出-时间-温度(PTT)曲线、形核率-温度(Nr T)曲线,并探讨了奥氏体中形变储能和形变诱导析出量对(Ti,V,Mo)C在γ/α中沉淀析出动力学的影响。结果表明,复合析出相(Ti,V,Mo)C在γ/α中沉淀析出的PTT曲线呈典型的"C"曲线形状,而Nr T曲线表现为典型的反"C"曲线形状,(Ti,V,Mo)C在γ中的最快析出温度为1020~1050℃。增加γ的形变储能,使(Ti,V,Mo)C在γ中沉淀析出的PTT曲线向左上方移动。增加γ中(Ti,V,Mo)C沉淀析出的形变诱导析出量,使(Ti,V,Mo)C在α中沉淀析出的Nr T曲线向右下方移动,经计算可知,(Ti,V,Mo)C在α中的最大形核率温度在630~650℃,理论计算结果和实验结果吻合较好。
In recent years, in order to develop the higher strength steel, the idea of increasing the strength of the hot rolled ferritic steel via complex Ti microalloyed technology has been widely accepted and applied, such as Ti-Nb, Ti-Mo, Ti-Nb-Mo and Ti-V-Mo. It is important to know the thermodynamics and kinetics of complex Ti contained precipitates for controlling the precipitation behavior of carbides and improving the mechanical properties of complex Ti microalloyed steels. In this work, according to the classical nulceation and growth kinetics theory and the solubility products of various carbides in austenite/ferrite(γ/α) matrix, the precipitation-time-temperature(PTT) curve, nucleation-time(Nr T) curve and the nucleation parameters of(Ti, V, Mo)C carbides in γ/α matrix of Ti-V-Mo complex microalloyed steel were obtained through the theoretical calculation. Moreover, the effects of deformation stored energy and the amount of strain-induced precipitation in γ matrix on the precipitation kinetics of(Ti, V, Mo)C were discussed. The results showed that the PTT diagrams of(Ti, V, Mo)C in γ/α matrix showed "C" shape curve,while the Nr T curves showed inverse "C" shape curve. The nose temperature of(Ti, V, Mo)C in g matrix is about 1020~1050 ℃. Increasing the deformation stored energy of γ matrix moves the PPT curve to the upper left. In addition, the Nr T curve of(Ti, V, Mo)C precipitated in α matrix moves towards to the lower right by properly increasing the amount of strain-induced precipitation in γ matrix. The maximum nucleation rate temperature of(Ti, V, Mo)C in ferrite is around 630~650 ℃ from the theoretical calculation,which agrees well with the result of experimental observation.
作者
张可
孙新军
张明亚
李昭东
叶晓瑜
朱正海
黄贞益
雍岐龙
ZHANG Ke;SUN Xinjun;ZHANG Mingya;LI Zhaodong;YE Xiaoyu;ZHU Zhenghai;HUANG Zhenyi;YONG Qilong(School of Metallurgical Engineering,Anhui University of Technology,Maanshan 243032,China;Key Laboratory of Metallurgical Emission Reduction & Resources Recycling,Ministry of Education,Anhui University of Technology,Maanshan 243032,China;Institute of Structural Steels,Central Iron and Steel Research Institute,Beijing 100081,China;State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,Panzhihua Group Co.,Ltd.,Panzhihua 617000,China)
出处
《金属学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第8期1122-1130,共9页
Acta Metallurgica Sinica
基金
国家自然科学基金项目Nos.51704008和51674004
国家重点研发计划项目Nos.2017YFB0305100和2017YFB0304700
国家重点基础研究计划项目No.2015CB654803
中国钢研科技集团有限公司科技基金项目No.15G60530A
安徽工业大学青年科研基金项目No.QZ201603
钒钛资源综合利用国家重点实验室开放基金项目No.18100009~~