期刊文献+

石墨烯/聚苯胺复合薄膜材料制备及其在电极中的研究

Preparation of Graphene/Polyaniline Composite Film Materials and the Research in Electrode
下载PDF
导出
摘要 石墨烯凭借巨大的比表面积和优异的电性能在储能领域引起了广泛的关注,但其较低的双电层电容以及团聚问题限制了其应用发展。通过扫描电子显微镜、傅里叶红外光谱等表征石墨烯/聚苯胺薄膜电极材料结构与形貌变化,测试反应时间对其电学性能的影响。结果表明,聚苯胺原位聚合反应时间在6~24 h时,石墨烯/聚苯胺复合电极材料展现出优良的循环稳定性能、较高的比电容以及赝电容特性,但是当反应时间达到48 h时其比电容迅速下降,丧失储能能力。 Graphene attracted great attention gradually in the field of energy storage because of its large specific surface area and fine electrical properties. However, its lower double layer capacitance and the graphene agglomeration restricted its further development. In this paper, the morphology and structure of graphene/polyaniline film were characterized by scanning electron microscope( SEM) and Fourier infrared spectroscopy( FTIR) and the effect of modified polyaniline modification time on the electrical properties of graphene film electrodes were tested by electrochemical analyzer. As a result, the modified graphene film exhibits pseudo capacitance and excellent cycling stability and high specific capacitance when modification time of 6 ~ 24 h. However,when the reaction time reaches 48 h,the specific capacitance of the graphene film decreases rapidly and the graphene film loses the energy storage performance.
作者 吴力立 罗硕 姚金富 邓小辉 张超灿 WU Li-li;LUO Shuo;YAO Jin-fu;DENG Xiao-hui;ZHANG Chao-can(School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处 《塑料工业》 CAS CSCD 北大核心 2018年第8期136-139,共4页 China Plastics Industry
基金 国家级大学生创新创业训练计划(武汉理工大学20171049701023)
关键词 石墨烯 聚苯胺 原位聚合 反应时间 电学性能 Graphene Polyaniline In-Situ Polymerization Reaction Time Electrical Performance
  • 引文网络
  • 相关文献

参考文献3

二级参考文献76

  • 1NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296) : 666-669.
  • 2NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two- dimensional gas of massless Dirae fermions in graphene[J]. Na- ture, 2005, 438(7065): 197-200.
  • 3GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Na- ture Materials, 2007, 6(3): 183-191.
  • 4BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3) : 902-907.
  • 5CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 528-527.
  • 6LEE C G, WEI X D, KYSAR J W, et al. Measurement of the e- lastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
  • 7KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivi- ty[J]. ChemMater, 2010, 22(11): 3441-3450.
  • 8WAKABAYASHI K, PIERRE C, DIKIN D A, et al. Polymer- graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromole- cules, 2008, 41(6): 1905-1908.
  • 9YANG Y, WANG J, ZHANG J, et al. Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles[J]. Lang- muir, 2009, 25(19): 11808-11814.
  • 10KIM H, MACOSKO C W. Processing-property relationships of polycarhonate/graphene composites [J]. Polymer, 2009, 50 (15) : 3797-3809.

共引文献42

;
使用帮助 返回顶部