期刊文献+

Global Mild Solution of Stochastic Generalized Navier–Stokes Equations with Coriolis Force 被引量:4

Global Mild Solution of Stochastic Generalized Navier–Stokes Equations with Coriolis Force
原文传递
导出
摘要 In this paper, we apply Littlewood-Paley theory and Ito integral to get the global existence of stochastic Navier-Stokes equations with Coriolis force in Fourier-Besov spaces. As a comparison, we also give corresponding results of the deterministic Navier-Stokes equations with Coriolis force. In this paper, we apply Littlewood-Paley theory and Ito integral to get the global existence of stochastic Navier-Stokes equations with Coriolis force in Fourier-Besov spaces. As a comparison, we also give corresponding results of the deterministic Navier-Stokes equations with Coriolis force.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第11期1635-1647,共13页 数学学报(英文版)
基金 supported by NSFC(Grant Nos.11471309 and 11771423) NSFC of Fujian(Grant No.2017J01564) Teaching Reform Project in Putian University(Grant No.JG201524) supported partly by NSFC(Grant No.11771423)
关键词 Littlewood Paley theory Ito formula stochastic Navier Stokes equations Coriolis force Littlewood Paley theory Ito formula stochastic Navier Stokes equations Coriolis force
  • 相关文献

同被引文献7

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部