摘要
Conjugated polymers have received considerable attentions over the past years due to their large-area potential applications via low-cost solution processing. Improving crystallinity of conjugated polymer molecules in solution-processed thin films is crucial for their efficient charge transport and thus high performance optoelectronic devices. Herein, with diketopyrrolopyrrole-quaterthiophene (PDQT) copo/ymer as an example, it is found that by simply reducing the solution concentration for spincoating meanwhile with the assistance of post-annealing, significantly enhanced film crystallinity with formation of typical single crystalline domains is obtained, which benefits from the enough space for better molecular assembly especially at the semiconductor/dielectric interface. High performance polymer transistors and phototransistors were finally constructed based on the optimal lowconcentration (2 mg/mL) spin-coated PDQT films (~12 nm), which giving a high charge carrier mobility of 2.28 cm2 V-1 s-1 and a photoresponse on/off ratio of 2.1 ×107 at VG = 0 V under white light irradiation of 6mW/cm2. The results suggest that the bright future of PDQT crystalline films for large-area flexible integrated optoelectronic devices and the application of effective low-concentration processing approach in solution-processed organic electronics with reduced material waste.
Conjugated polymers have received considerable attentions over the past years due to their large-area potential applications via low-cost solution processing. Improving crystallinity of conjugated polymer molecules in solution-processed thin films is crucial for their efficient charge transport and thus high performance optoelectronic devices. Herein, with diketopyrrolopyrrole-quaterthiophene (PDQT) copo/ymer as an example, it is found that by simply reducing the solution concentration for spincoating meanwhile with the assistance of post-annealing, significantly enhanced film crystallinity with formation of typical single crystalline domains is obtained, which benefits from the enough space for better molecular assembly especially at the semiconductor/dielectric interface. High performance polymer transistors and phototransistors were finally constructed based on the optimal lowconcentration (2 mg/mL) spin-coated PDQT films (~12 nm), which giving a high charge carrier mobility of 2.28 cm2 V-1 s-1 and a photoresponse on/off ratio of 2.1 ×107 at VG = 0 V under white light irradiation of 6mW/cm2. The results suggest that the bright future of PDQT crystalline films for large-area flexible integrated optoelectronic devices and the application of effective low-concentration processing approach in solution-processed organic electronics with reduced material waste.
基金
financial support from the Ministry of Science and Technology of China (Nos. 2017YFA0204503, 2016YFB0401100)
the National Natural Science Foundation of China (Nos. 51725304, 91433115, 51633006, 51733004)
the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12030300)
National program for support of top-notch young professionals