期刊文献+

Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China 被引量:1

Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert,China
下载PDF
导出
摘要 Biological soil crusts (BSCs) are bio-sedimentary associations that play crucial ecological roles in arid and semi-arid regions. In the Gurbantunggut Desert of China, more than 27% of the land surface is characterized by a predominant cover of lichen-dominated BSCs that contribute to the stability of the desert. However, little is known about the major factors that limit the spatial distribution of BSCs at a macro scale. In this study, the cover of BSCs was investigated along a precipitation gradient from the margins to the center of the Gurbantunggut Desert. Environmental variables including precipitation, soil particle size, soil pH, electrical conductivity, soil organic carbon, total salt, total nitrogen, total phosphorus and total potassium were analyzed at a macro scale to determine their association with differing assemblages of BSCs (cyanobacteria crusts, lichen crusts and moss crusts) using constrained linear ordination redundancy analysis (RDA). A model of BSCs distribution correlated with environmental variables that dominated the first two axes of the RDA was constructed to clearly demonstrate the succession stages of BSCs. The study determined that soil particle size (represented by coarse sand content) and precipitation are the most significant drivers influencing the spatial distribution of BSCs at a macro scale in the Gurbantunggut Desert. The cover of lichen and moss crusts increased with increasing precipitation, while the cover of cyanobacteria crusts decreased with increasing precipitation. The cover of lichen and moss crusts was negatively associated with coarse sand content, whereas the cover of cyanobacteria crusts was positively correlated with coarse sand content. These findings highlight the need for both the availability of soil moisture and a relatively stable of soil matrix, not only for the growth of BSCs but more importantly, for the regeneration and rehabilitation of disturbed BSC communities in arid and semi-arid lands. Thereby, this study will provide a theory basis to effectively increase soil stability in desert regions. Biological soil crusts (BSCs) are bio-sedimentary associations that play crucial ecological roles in arid and semi-arid regions. In the Gurbantunggut Desert of China, more than 27% of the land surface is characterized by a predominant cover of lichen-dominated BSCs that contribute to the stability of the desert. However, little is known about the major factors that limit the spatial distribution of BSCs at a macro scale. In this study, the cover of BSCs was investigated along a precipitation gradient from the margins to the center of the Gurbantunggut Desert. Environmental variables including precipitation, soil particle size, soil pH, electrical conductivity, soil organic carbon, total salt, total nitrogen, total phosphorus and total potassium were analyzed at a macro scale to determine their association with differing assemblages of BSCs (cyanobacteria crusts, lichen crusts and moss crusts) using constrained linear ordination redundancy analysis (RDA). A model of BSCs distribution correlated with environmental variables that dominated the first two axes of the RDA was constructed to clearly demonstrate the succession stages of BSCs. The study determined that soil particle size (represented by coarse sand content) and precipitation are the most significant drivers influencing the spatial distribution of BSCs at a macro scale in the Gurbantunggut Desert. The cover of lichen and moss crusts increased with increasing precipitation, while the cover of cyanobacteria crusts decreased with increasing precipitation. The cover of lichen and moss crusts was negatively associated with coarse sand content, whereas the cover of cyanobacteria crusts was positively correlated with coarse sand content. These findings highlight the need for both the availability of soil moisture and a relatively stable of soil matrix, not only for the growth of BSCs but more importantly, for the regeneration and rehabilitation of disturbed BSC communities in arid and semi-arid lands. Thereby, this study will provide a theory basis to effectively increase soil stability in desert regions.
出处 《Journal of Arid Land》 SCIE CSCD 2018年第5期701-711,共11页 干旱区科学(英文版)
基金 supported by the National Natural Science Foundation of China(41571256,41401296)
关键词 biological soil crust distribution macro scale redundancy analysis (RDA) DISTURBANCE temperate desert biological soil crust distribution macro scale redundancy analysis (RDA) disturbance temperate desert
  • 相关文献

同被引文献27

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部