摘要
为减少预测控制的在线计算量 ,提出了对优化变量进行集结的优化策略。通过一个集结矩阵将原优化变量与集结后的变量联系起来 ,从而为多种预测控制算法建立一个统一的框架。分析了现有的几种典型优化策略的集结表述 ,说明了所提出的集结优化框架具有一定的普适性 ,并在此框架下提出一种新的具有输入衰减形式的集结优化算法。
An aggregation optimization strategy is proposed to reduce the on line computational burden of model predictive control (MPC). A uniform framework is built for a class of simplified strategies, in which the original optimized variables are connected with the aggregated ones through the aggregation matrix, so the on line optimization of MPC is turned into a low dimensional programming of aggregated variables or the aggregated matrix. Several existing typical MPC algorithms are described and unified under this framework. Based on this framework, a new aggregation strategy with input decaying form is also presented.
出处
《控制与决策》
EI
CSCD
北大核心
2002年第5期563-566,共4页
Control and Decision
基金
国家自然科学基金项目 (6 99340 2 0 )
国家 973计划项目 (G19980 30 4 15 )
关键词
预测控制
优化变量
集约策略
集结矩阵
滚动时域
model predictive control
aggregation optimization
aggregation matrix
receding horizon