期刊文献+

自适应滤波算法在板结构振动控制中的应用 被引量:3

The Application of Adaptive Filtering Theory in Active Control of Structural Vibration
下载PDF
导出
摘要 以简支板为模型,运用模态分析方法推导并分析讨论结构振动主动控制的基本原理和方法。在此基础上,以时域振速为控制目标,对板进行振动控制建模,分别采用滤波-X最小均方算法(FxLMS)和格型联合估计滤波器与基于QR分解的最小二乘格型(QRD-LSL)自适应滤波算法相结合的振动控制方法来进行实时的振动主动控制。研究算法中相关参数和控制力位置对控制效果的影响,对两种自适应滤波算法的控制效果进行对比。仿真结果表明,两种算法都能有效控制板结构的振动,QRD-LSL自适应滤波算法的控制效果更优,其相对于FxLMS算法虽计算量有所增加,但收敛速度快,稳态误差小,跟踪性能好。 Using a hinged plate as model, the basic principle and method of active control on structural vibration are derived by using the mode superposition method. On this basis, the vibration control model of the plate was built to decrease the vibration velocity in the time domain. Filter-X LMS algorithm (FxLMS) and lattice estimation filter combined with least squares adaptive filtering algorithm based on QR decomposition (QRD-LSL) for vibration control method were used to real-time active vibration control. The influence of the relative parameters and the position of the control force on the control effect is studied, and the control effects of the two kinds of adaptive filtering algorithms are compared. The simulation results show that the two algorithms can effectively control the vibration of plate, the control effect of QRD-LSL is better than FxLMS, the computation is increased, but the convergence speed is fast, the steady-state error is small and the tracking performance is good.
作者 胥馨尹 宁少武 XU Xin-yin;NING Shao-wu(Institute of Systems Engineering,CAEP,Sichuan Mianyang 621900,China;Nanjing University of Aeronautics and Ast-ronautics,Jiangsu Nanjing 210016,China)
出处 《机械设计与制造》 北大核心 2018年第12期188-191,共4页 Machinery Design & Manufacture
基金 国家自然科学基金资助(11172131)
关键词 时域振动控制 振型叠加 滤波-x最小均方算法 格型联合估计滤波 QR分解的最小二乘格型自适应滤波器 Time Domain Vibration Control Mode Superposition FxLMS Lattice Joint Estimation Filter QRD-LSL
  • 相关文献

参考文献2

二级参考文献15

  • 1陈克安,马远良.间歇自适应RLS算法[J].西北工业大学学报,1994,12(2):298-302. 被引量:1
  • 2陈克安,马远良.应用于有源消声的间歇自适应RLS算法[J].电子学报,1995,23(7):83-86. 被引量:2
  • 3ManolakisDG IngleVK KogonSM.统计与自适应信号处理[M].北京:电子工业出版社,2003..
  • 4陈克安.有源噪声控制[M].北京:国防工业出版社,2009.
  • 5Kuo S M, Morgan D R. Active Noise Control[M]. Springer Handbook of Speech Processing, 2008:1 001-1 008.
  • 6Kuo S M, Morgan D R. Active noise control: a tutori- al review [J]. Proceeding of the IEEE, 1999, 87(6): 943-973.
  • 7Diniz P S R.自适应滤波算法与实现[M].第2版.刘郁林,景晓军,译.北京:电子工业出版社,2004.
  • 8Haykin S.自适应滤波器原理[M].第4版.郑宝玉,译.北京:电子工业出版社,2010.
  • 9Xiao Y G, Ma L Y, Khorasani K, et al. A filtered-x RLS based narrowhand active noise control system in the presence of frequency mismatch [A]. Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on [C]. Kobe, Japan,2005, 1: 260-263.
  • 10Liao C W, Lin J Y. New FIR filter-based adaptive algorithms incorporating with commutation error to Improve active matica, 2007, noise control performance [J]. Auto 43:325-331.

共引文献10

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部