期刊文献+

Boussinesq方程的精确孤子解研究

Study on exact soliton solution of Boussinesq equation
下载PDF
导出
摘要 本文通过Jumarie的改性Riemann Liouville导数构建时间分数阶Boussinesq方程;应用函数变量法得到了这些时间分数阶方程的精确孤子解,这些精确解可以描述周期波和孤立波;导出的解在海洋工程中有许多潜在的应用,结果表明函数变量法求解分数阶微分方程简单有效。 In this paper, time-fractional Boussinesq-like equations are constructed via Jumarie's modified Riemann-Liouville derivative. The functional variable method is applied to obtain exact soliton solutions of these time-fractional equations. These exact solutions can describe periodic and soliton waves. The derived solutions address many potential applications in ocean engineering and the results show that the functional variable method is simple and efficient to solve fractional differential equations.
作者 史曙光 刘东生 SHI Shuguang;LIU Dongsheng(School of Science,Nanjing University of Science and Technology,Nanjing Jiangsu 201712,China)
出处 《阜阳师范学院学报(自然科学版)》 2018年第4期1-4,21,共5页 Journal of Fuyang Normal University(Natural Science)
关键词 孤子解 精确解 时间分数阶Boussinesq方程 函数变量法 soliton solution exact solutions time-fractional Boussinesq-like equation functional variable method
  • 相关文献

参考文献3

二级参考文献8

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部