期刊文献+

Dark Solitons for the Defocusing Cubic Nonlinear Schr?dinger Equation with the Spatially Periodic Potential and Nonlinearity

Dark Solitons for the Defocusing Cubic Nonlinear Schr?dinger Equation with the Spatially Periodic Potential and Nonlinearity
原文传递
导出
摘要 We study the existence of dark solitons of the defocusing cubic nonlinear Schr¨odinger(NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincar′e map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity. We study the existence of dark solitons of the defocusing cubic nonlinear Schr¨odinger(NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincar′e map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第9期309-319,共11页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.61178091 the National Key Basic Research Program of China under Grant No.2011CB302400 the Open Project Program of State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China under Grant No.Y4KF211CJ1
关键词 DEFOCUSING CUBIC NLS EQUATION the theory of UPPER defocusing cubic NLS equation the theory of upper
  • 相关文献

参考文献15

  • 1闻小永,高以天.Darboux Transformation and Explicit Solutions for Discretized Modified Korteweg-de Vries Lattice Equation[J].Communications in Theoretical Physics,2010(5):825-830. 被引量:9
  • 2Zhenya Yan.Exact analytical solutions for the generalized non-integrable nonlinear Schr?dinger equation with varying coefficients[J]. Physics Letters A . 2010 (48)
  • 3Pedro J. Torres,Vladimir V. Konotop.On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schr?dinger Equation with a Periodic Potential[J]. Communications in Mathematical Physics . 2008 (1)
  • 4G. Theocharis,D.J. Frantzeskakis,P.G. Kevrekidis,R. Carretero-González,B.A. Malomed.Dark soliton dynamics in spatially inhomogeneous media: Application to Bose–Einstein condensates[J]. Mathematics and Computers in Simulation . 2005 (5)
  • 5Juan Campos,Pedro J. Torres.On the structure of the set of bounded solutions on a periodic Liénard equation[J]. proc . 1999 (5)
  • 6Ablowitz M J,Clarkson P A.Solitons, nonlinear evolution equations and inverse scattering. . 1991
  • 7Sulem C,Sulem P L.The nonlinear Schr dinger equation, self-focusing and wave collapse. Journal of Applied Mathematics . 1999
  • 8V. A. BRAZHNYI,V. V. KONOTOP.THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES. Modern Physics Letters A . 2004
  • 9Dalfovo F,Giorgini S,Pitaevskii LP,et al.Theory of Bose-Einstein condensation in trapped gases. Reviews of Modern Physics . 1999
  • 10Hasegawa A,Kodama Y.Solitons in Optical Communications. . 1995

二级参考文献76

  • 1W.P. Hong, Phys. Lett. A 361 (2007) 520.
  • 2B. Tian and Y.T. Gao, Eur. Phys. J. D 33 (2005) 59.
  • 3B. Tian and Y.T. Gao, Eur. Phys. Plasmas 12 (2005) 070703.
  • 4B. Tian and Y.T. Gao, Eur. Phys. Lett. A 340 (2005) 243.
  • 5B. Tian and Y.T. Gao, Eur. Phys. Lett. A 340 (2005) 449.
  • 6G. Das and J. Sarma, Phys. Plasmas 6 (1999) 4394.
  • 7Z.Y Yan and H.Q. Zhang, J. Phys. A 34 (2001) 1785.
  • 8Y.T Gao and B. Tian, Phys. Plasmas (Lett.) 13 (2006) 120703.
  • 9Y.T Gao and B. Tian,Phys. Lett. A 349 (2006) 314.
  • 10Y.T Gao and B. Tian,Phys. Lett. A 361 (2007) 523.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部