期刊文献+

随机小介质球散射的稀疏矩阵/规则网格法分析

Sparse-Matrix/Canonical Grid Method for Scattering from Random Small Spherical Particles
下载PDF
导出
摘要 利用张量电场积分方程和稀疏矩阵/规则网格 (SMCG)法分析了随机分布小介质球的散射问题 .SMCG法根据离散单元间场作用的强弱 ,将阻抗元素分解为强作用的稀疏矩阵和弱作用的补充矩阵 .在共轭梯度法迭代求解矩阵方程时 ,直接计算强作用稀疏阵与待求向量的乘积 ;而对弱作用的补充矩阵 ,则将阻抗元素在规则网格上应用Taylor级数展开 ,由于级数项中存在平移不变性的核 ,因而可利用快速傅里叶变换实现补充矩阵与待求向量的乘积 .实验算例表明 :SMCG法和矩量法的数值曲线吻合性很好 ,在分析电大目标散射时减少了计算机内存和CPU时间要求 。 Based on tensor electric integral equation, the sparse-matrix/canonical grid (SMCG) method is applied to analyze scattering of random small particles. In SMCG method, the impedance matrix is decomposed into a sparse matrix which corresponds to near interactions and its complementary matrix which corresponds to far interaction. During conjugate gradient method (CGM) interative process, the near-interaction portion of the matrix-vector multiplication is computed directly as the moment method (MOM). The far-interaction portion of matrix vector multiplication is computed indirectly using fast Fourier transforms. This is achieved by a Taylor series expansion of impedance matrix elements about the grid points of uniformly spaced canonical grid overlaying the randomly located spheres. The numerical results from SMCG are consistent with that from MOM, whereas the SMCG method is superior to MOM for analyzing electric large scalar problems when considering the requirement of CPU time and computer storage.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2002年第10期1012-1015,共4页 Journal of Xi'an Jiaotong University
基金 教育部"教育培植计划"资助项目
关键词 稀疏矩阵/规则网格法 傅里叶变换 级数展开 随机小介质球 电磁散射 SMCG法 共轭梯度法 sparse-matrix canonical grid Fourier transforms series expansion random small spherical particles.
  • 相关文献

参考文献6

  • 1Tsang L, Chan C H, Pak K, et al. Monte Carlo simulation of large-scale problem of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method [J]. IEEE Trans Antennas & Propaga, 1995, 43(8): 851~859.
  • 2Chan C H, Tsang L. A sparse-matrix canonical-grid method for scattering by many scatters [J]. Microwave and Optical Technology Letters, 1995, 8(2): 114~118.
  • 3Livesay D E, Chen K M. Electromagnetic fields induced inside arbitrarily shaped biological bodies [J]. IEEE Trans Microwave Theory Tech, 1974, 22(12): 1 273~1 280.
  • 4Chan C H, Lin C M, Tsang L, et al. A sparse-matrix/canonical grid method for analyzing microstrip structures [J].IEICE Trans Electron, 1997, 80(11): 1 354~1 359
  • 5Shark T K, Arvas E, Ponnapalli S. Electromagnetic scattering from dielectric bodies [J]. IEEE Trans Antennas & Propaga, 1989, 37(5): 673~676.
  • 6Tsang L, Kong J A, Ding K H, et al. Scattering of electromagnetic waves: numerical simulations [M]. New York: John Willy & Sons Inc, 2001. 405~424.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部