期刊文献+

FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS 被引量:1

FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
原文传递
导出
摘要 This paper investigates the relationship between state feedback and Hamiltonian realization. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output. Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given. For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2002年第1期61-68,共8页 系统科学与复杂性学报(英文版)
基金 This research is supported partly by the National Natural Science Foundation of China(No.G59837270)and National 973 Project(No.G
关键词 Hamiltonianrealization symplectic group symplectic manifold Poisson bracket generalized Hamiltonian systems. 哈密顿系统 反馈表示 辛群 辛流形
  • 引文网络
  • 相关文献

参考文献17

  • 1J. M. Souriau, Structure of Dynamical Systems, A Symplectic View of Physics, Translated by C.H. Cushman-de Vries, Birkhauser, 1997.
  • 2R. A. Abraham, J. E. Marsden, Foundations of Mechanics, 2nd Ed. Benjamin/Cummlngs Pub.Com. Inc., 1978.
  • 3V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer. New York, 1978.
  • 4V. I. Arnold, A. B. Givental, Symplectic geometry, in Dynamical Systems Ⅳ, Encyclopedia in Mathematical Sciences, Vol. 4, V. I. Arnold, S. P. Novikov eds, Springer Verlag, 1990.
  • 5P. Libermann, C. Marle, Symplectic Geometry and Analytical Mechanics, Translated by B. E.Schwarzbach, D. Reidel Pub. Comp. 1987.
  • 6K. Feng, D. Wang, Dynamical systems and geometric construction of algorithras, in Computational Mathematics in China, Contemporary Mathematics, 163, Zhong-Ci Shi, Chung-Chun Yang, Eds.1-31, 1994.
  • 7R. W. Brockett, Control theory and analytical mechanics, in Geometric Control Theory, eds. C.Martin and R. Hermann, in Vol. Ⅶ of Lie Groups, History, Frontiers and Applications, Math Sci.Press, 1977.
  • 8R. W. Brockett, A. Rahimi, Lie algebras and linear differential equations, in Ordinary Differential Equations, ed. L. Weiss, Academic Press, New York, 1972, 379-386.
  • 9B. Jakubezyk, Hamiltonian realizations of nonlinear systems, in Theory and Applications of Nonlinear Control Systems, C.I. Byrnes, A. Lindquist, 1987, 261-271.
  • 10H. Nijmeijer, A. J., van der Shaft, Nonlinear Dynamical Control Systems, Springer-Verlag, 1991.

引证文献1

二级引证文献5

;
使用帮助 返回顶部