期刊文献+

结合各向异性中值扩散的PET图像重建算法 被引量:1

PET Image Reconstruction Algorithm Combined with Anisotropic Median-Diffusion
下载PDF
导出
摘要 为了有效提高正电子发射断层成像图像的质量,通过把各向异性中值扩散滤波器融合到中值根先验算法中,提出了一种新的基于Bayesian理论的图像重建算法。新算法的每次迭代过程都可以分为两步:首先用各向异性中值扩散滤波器抑制重建图像中的噪声;然后用中值根先验算法重建图像。仿真实验结果表明,在正电子发射断层成像中,新算法不仅能有效地抑制噪声,还能精确地保护图像的边缘。此外,与其他类似算法相比,新算法吸收了各向异性中值扩散滤波器的优点,在迭代过程中对梯度阈值和扩散次数不敏感,易于实现,实用性强。 For improving the quality of positron emission tomography (PET) images, this paper proposes a newBayesian image reconstruction algorithm by combining anisotropic median-diffusion filter with median root prioralgorithm. Iterations of the proposed method can be divided into two steps: firstly, suppressing noise with the anisotropicmedian-diffusion filter; secondly, reconstructing image with median root prior algorithm. Simulation experimentresults present that the proposed algorithm can effectively suppress noise and accurately preserve edges information inPET image reconstruction. Furthermore, in comparison to other similar reconstruction algorithms, the proposed methodabsorbs the advantages of the anisotropic median- diffusion filter and is less sensitive to the selection of the imagegradient threshold and diffusion number, thus making the application of PET image reconstruction feasible.
作者 何骞 黄立宏 HE Qian;HUANG Lihong(College of Information Science and Engineering, Hunan City University, Yiyang, Hunan 413002, China;College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)
出处 《计算机科学与探索》 CSCD 北大核心 2016年第8期1166-1175,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.11371127 湖南省教育厅科研项目No.15C0253~~
关键词 正电子发射断层成像(PET) 各向异性中值扩散 中值根先验 图像重建 抑制噪声 positron emission tomography (PET) anisotropic median- diffusion median root prior image reconstruction suppressing noise
  • 相关文献

参考文献17

  • 1Shepp L A, Vardl Y. Maximum likelihood reconstruction foremission tomography[J]. IEEE Transactions on Medical Imaging,1982, 1(2): 113-122.
  • 2Gaitanis A, Kontaxakis G, Spyrou G, et al. PET image reconstruction:a stopping rule for the MLEM algorithm basedon properties of the updating coefficients[J]. ComputerizedMedical Imaging and Graphics, 2010, 34(2): 131-141.
  • 3Green P J. Bayesian reconstructions from emission tomographydata using a modified EM algorithm[J]. IEEE Transactionson Medical Imaging, 1990, 9(1): 84-93.
  • 4Alenius S, Ruotsalainen U. Bayesian image reconstructionfor emission tomography based on median root prior[J].European Journal of Nuclear Medicine, 1997, 24(3): 258-265.
  • 5Hsiao I T, Rangarajan A, Gindi G. A new convex edgepreservingmedian prior with applications to tomography[J].IEEE Transactions on Medical Imaging, 2003, 22(5): 580-585.
  • 6Guo Yu, Feng Yuanming, Sun Jian, et al. Automatic lung tumorsegmentation on PET/CT images using fuzzy Markov randomfield model[J]. Computational & Mathematical Methodsin Medicine, 2014(1): 171-188.
  • 7Norberg J, Roininen L, Vierinen J, et al. Ionospheric tomographyin Bayesian framework with Gaussian Markov randomfield priors[J]. Radio Science, 2015, 50(2): 138-152.
  • 8Jia Kun, Liang Shunlin, Wei Xiangqin, et al. Automaticland-cover update approach integrating iterative training sampleselection and a Markov random field model[J]. RemoteSensing Letters, 2014, 5(2): 148-156.
  • 9Gui Zhiguo, Liu Yi, He Jiawei. PML algorithm for positronemission tomography combined with nonlocal fuzzy anisotropicdiffusion filtering[J]. IEEE Transactions on NuclearScience, 2012, 59(5): 1984-1989.
  • 10Yan Jianhua, Yu Jun. Median-prior tomography reconstructioncombined with nonlinear anisotropic diffusion filtering[J].Journal of the Optical Society of America A, 2007, 24(4):1026-1033.

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部