期刊文献+

Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function 被引量:5

Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function
下载PDF
导出
摘要 By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given. By applying the second order Melnikov function, the chaos behaviors of a bistable piezoelectric cantilever power generation system are analyzed. Firstly, the conditions for emerging chaos of the system are derived by the second order Melnikov function. Secondly, the effects of each item in chaos threshold expression are analyzed. The excitation frequency and resistance values, which have the most influence on chaos threshold value, are found. The result from the second order Melnikov function is more accurate compared with that from the first order Melnikov function. Finally, the attraction basins of large amplitude motions under different exciting frequency, exciting amplitude, and resistance parameters are given.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期200-207,共8页 力学学报(英文版)
基金 supported by the National Natural Science Foundation of China (Grant 11172199)
关键词 Bistable piezoelectric cantilever beam Second order Melnikov function Homoclinic bifurcation Basin of attraction Bistable piezoelectric cantilever beam Second order Melnikov function Homoclinic bifurcation Basin of attraction
  • 相关文献

参考文献6

二级参考文献106

  • 1伍晓明,方华军,林建辉,任天令,刘理天.2008功能材料与器件学报,14467.
  • 2Arfieta A E Hagedom P, Erturk A, Inman D J 2010 Appl. Phys. Lett. 97 104102.
  • 3Gammaitoni L, Neri I, Vocca H 2010 Chem. Phys. 375 435.
  • 4Ferrari M, Ferrari V, Guizzetti M Andb B, Baglio S, Trigona C 2010 Sens. Actuators A: Phys. 162 425.
  • 5Erturk A, Inman D J 2011 J. Sound Vib. 330 2339.
  • 6Moon F C, Holmes P J 1979 J. Sound Vib. 65 275.
  • 7Mann B P, Owens B A 2010 J. Sound Vib. 329 1215.
  • 8S Stanton S C, McGehee C C, Mann B P 2010 Physica D 239 640.
  • 9韩权威,李坤,严玲,周金龙,王雨,陈王丽华.2011压电与声光3385.
  • 10马华安,刘景全,唐刚,杨春生,李以贵.2011传感器与微系统3066.

共引文献91

同被引文献20

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部