摘要
Two novel schemes are proposed to synthesize high resolution range profile (HRRP) based on co-located multiple-input multiple-output (MIMO) system in the context of the joint radar and communication system. The difference between two schemes is the pattern of selecting pulses, which depends on the demand for the velocity information. The system, a type of frequency diverse array (FDA), takes full advantage of the phase-coded orthogonal frequency division multiplexing (OFDM) signal. Furthermore, the complete discrete form of the phase-coded OFDM echoes is utilized to derive the HRRP processing. The velocity estimation in the second scheme aims to eliminate velocity ambiguity, and high velocity can be retrieved exactly. Meanwhile, the imaging method is investigated with random frequency coding applied to an array. The desired performance of resolving velocity ambiguity and suppressing noise is shown by means of comparisons with previous work. The advantages in the radar imaging and the significance of the work are concluded in the end.
Two novel schemes are proposed to synthesize high resolution range profile (HRRP) based on co-located multiple-input multiple-output (MIMO) system in the context of the joint radar and communication system. The difference between two schemes is the pattern of selecting pulses, which depends on the demand for the velocity information. The system, a type of frequency diverse array (FDA), takes full advantage of the phase-coded orthogonal frequency division multiplexing (OFDM) signal. Furthermore, the complete discrete form of the phase-coded OFDM echoes is utilized to derive the HRRP processing. The velocity estimation in the second scheme aims to eliminate velocity ambiguity, and high velocity can be retrieved exactly. Meanwhile, the imaging method is investigated with random frequency coding applied to an array. The desired performance of resolving velocity ambiguity and suppressing noise is shown by means of comparisons with previous work. The advantages in the radar imaging and the significance of the work are concluded in the end.
基金
supported by the National Natural Science Foundation of China(61071163
61071164
61471191
61501233)
the Fundamental Research Funds for the Central Universities(NP2014504)
the Aeronautical Science Foundation(20152052026)
the Electronic&Information School of Yangtze University Innovation Foundation(2016-DXCX-05)
the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ15-03)
the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0281)
the Fundamental Research Funds for the Central Universities
partly funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA)