摘要
An edge wave numerical model was developed based on extended Boussinesq equations with the internal wave-generation method. The form of edge waves near a seawall was chosen as the input signal in order to avoid treatment of the moving shoreline on a sloping beach. As there was an energy transfer between different edge wave modes, not only the target mode but also other modes appeared in the simulations. Due to the nonlinear effect, the simulation results for mode-0 edge waves were slightly modulated by mode-1 and mode-2 waves. As the magnitudes of these higher-mode waves are not significantly related to those of the target mode, the internal wave-generation method in Boussinesq equations can produce high-quality edge waves. The numerical model was used to investigate the nonlinear properties of standing edge waves, and the numerical results were in strong agreement with theory.
An edge wave numerical model was developed based on extended Boussinesq equations with the internal wave-generation method. The form of edge waves near a seawall was chosen as the input signal in order to avoid treatment of the moving shoreline on a sloping beach. As there was an energy transfer between different edge wave modes, not only the target mode but also other modes appeared in the simulations. Due to the nonlinear effect, the simulation results for mode-0 edge waves were slightly modulated by mode-1 and mode-2 waves. As the magnitudes of these higher-mode waves are not significantly related to those of the target mode, the internal wave-generation method in Boussinesq equations can produce high-quality edge waves. The numerical model was used to investigate the nonlinear properties of standing edge waves, and the numerical results were in strong agreement with theory.
基金
supported by the National Natural Science Foundation of China(Grants No.51409168 and 51579090)
the Fundamental Research Funds for the Central Universities(Grant No.2015B15714)
the Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security(Grant No.JSCE201508)