期刊文献+

基于声学特征的腭裂语音声韵母切分 被引量:3

Initial and final segmentation in cleft palate speech based on acoustic characteristics
下载PDF
导出
摘要 设计了一种腭裂语音的声韵母切分算法。通过主观的波形测试和客观的F检验及t检验,证明了腭裂语音与正常语音具有显著性差异。定义声母具有清音音素特性的音节为Ⅰ类音节,声母具有浊音音素特性的音节为Ⅱ类音节。首先基于层次聚类模型自动判别Ⅰ类、Ⅱ类音节,然后定义类浊音权重函数和类清音概率函数,实现Ⅰ类音节的声韵母一级切分,再通过短时自相关函数峰值个数的一阶微分实现Ⅰ类音节声韵母的二级切分。基于声韵母波形差异性,检测短时自相关函数的能量跳变点,实现Ⅱ类音节的声韵母切分。通过大样本实验,结果表明提出的腭裂语音声韵母自动判别算法具有较高的正确率,Ⅰ类音节的正确率达到90.72%,Ⅱ类音节的正确率为92.90%。 This paper presents an initial/final segmentation algorithm in cleft palate speech.Through subjective test and objective F test and t test,it is proven that there are significant differences between cleft palate speech and normal speech.Two types of syllables are defined firstly:Class I syllable whose initial has the characteristics of voiceless phoneme,and Class II syllable whose initial has the characteristics of voiced phoneme.These two types of syllables are classified based on hierarchical fuzzy clustering model.Then for the class I syllable,a similar-to-voiced-sound weighting function and similar-to-unvoiced-sound probability function are defined,in order to achieve the roughly initial/final segmentation.The accurate location of initial/final boundary in class I syllable is achieved,through calculating the first-order difference of autocorrelation function’s peak number.For the class II syllable,based on the waveform difference between initial and final,the energy’s jumping point of short-autocorrelation function is found in order to achieve the initial/final segmentation.The experiment results show that the proposed algorithm achieves a high segmentation accuracy rate:Segmentation accuracy for class I syllables is 90.72%,and segmentation accuracy for class II syllables is 92.90%.
作者 王熙月 黄毅鹏 钱佳慧 何凌 黄华 尹恒 WANG Xiyue;HUANG Yipeng;QIAN Jiahui;HE Ling;HUANG Hua;YIN Heng(College of Electrical and Information,Sichuan University,Chengdu 610065,China;West China Hospital of Stomatology,Sichuan University,Chengdu 610041,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第8期123-130,136,共9页 Computer Engineering and Applications
基金 国家自然基金青年科学基金项目(No.61503264)
关键词 腭裂语音 声韵母切分 层次聚类 短时自相关函数 类浊音权重函数 类清音概率函数 短时幅度函数 cleft palate speech initials and finals segmentation hierarchical clustering short-time autocorrelation similarto-voiced-sounds weighting function similar-to-unvoiced-sound probability function short-time magnitude function
  • 相关文献

参考文献14

二级参考文献131

共引文献86

同被引文献21

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部