摘要
Identifying the unknown geometric and material information of a multi-shield object by analyzing the radiation signature measurements is always an important problem in national and global security. In order to identify the unknown shielding layer thicknesses of a source/shield system with gamma-ray spectra, we have developed a derivative-free inverse radiation transport model based on a differential evolution algorithm with global and local neighbourhoods(IRT-DEGL). In the present paper, the IRT-DEGL model is further extended for estimating the unknown thicknesses with random initial guesses and material mass densities of multi-shielding layers as well as their combinations. Using the detected gamma-ray spectra,the illustration of inverse studies is implemented and the main influence factors for inverse results are also analyzed.
Identifying the unknown geometric and material information of a multi-shield object by analyzing the radiation signature measurements is always an important problem in national and global security. In order to identify the unknown shielding layer thicknesses of a source/shield system with gamma-ray spectra, we have developed a derivative-free inverse radiation transport model based on a differential evolution algorithm with global and local neighbourhoods(IRT-DEGL). In the present paper, the IRT-DEGL model is further extended for estimating the unknown thicknesses with random initial guesses and material mass densities of multi-shielding layers as well as their combinations. Using the detected gamma-ray spectra,the illustration of inverse studies is implemented and the main influence factors for inverse results are also analyzed.
基金
supported by the National Natural Science Foundation of China(Nos.11605163 and 21504085)
the China Academy of Engineering Physics Foundation for Development of Science and Technology(No.201580103014 and No.2015B0301063)
the Foundation for Special Talents in China Academy of Engineering Physics(No.TP201502-3)
the Sichuan Science and Technology Development Foundation for Young Scientists(No.2017Q0050)