期刊文献+

基于SimRank的公共自行车站点聚类算法 被引量:4

Public Bike Station Clustering Algorithm Based on SimRank
下载PDF
导出
摘要 针对城市公共自行车系统快速发展面临的潮汐问题,提出一种基于SimRank的自行车站点聚类算法。从站点间的关联关系出发,基于站点特性定义站点相似度,引入SimRank算法进行站点相似度计算,并按计算得到的相似度值,根据最大相似优先的思想对站点进行聚类。实验结果表明,该算法得到的聚类结果能准确反映自行车流趋势和区域特征,其中同聚类成员也具有较大的关联性。 In view of the tide problem of fast developed city public bike system,this paper proposes a station clustering algorithm based on SimRank,which uses the characteristics of public bike.Firstly,the definition of station similarity is proposed based on the relation between stations.Secondly,the SimRank algorithm is introduced to calculate the similarity between stations.Finally,according to the calculated similarity values,the stations are clustered with the idea of maximum similarity priority.Experimental results show that the clustering results by the proposed algorithm have accurate bike flow characteristic and regional characteristic,m eanw hile,the members in same cluster have great relevance.
作者 朱金山 刘良旭 周超兰 管博 ZHU Jinshan;LIU Liangxu;ZHOU Chaolan;GUAN Bo(Library and Information Center,Ningbo Institute of Technology,Zhejiang University,Ningbo,Zhejiang 315100,China;School of Electronic and Information Engineering,Ningbo University of Technology,Ningbo,Zhejiang 315211,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第4期12-16,共5页 Computer Engineering
基金 浙江省自然科学基金(LY14F020007) 浙江省公益技术应用研究计划项目(2016C33255) 宁波市自然科学基金(2014A610072)
关键词 公共自行车 聚类分析 站点联系 站点特征 相似度矩阵 public bike clustering analysis station relationship station feature similarity matrix
  • 相关文献

参考文献4

二级参考文献28

  • 1雍小嘉,蒋永光,陈颖,韩佩玉.试论方剂功效表达的历史沿革及现代研究意义[J].时珍国医国药,2005,16(4):293-294. 被引量:3
  • 2闪四清,陈茵.数据挖掘——概念、模型、方法和算法[M].北京:清华大学出版社,2003.
  • 3Jeh G, Widom J. SimRank: A Measure of Structural-context Similarity[C]//Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. EdmOnton, Canada: [s. n.], 2002: 538-543.
  • 4Yin Xiaoxin, Han Jiawei, Yu P S. LinkClus: Efficient Clustering via Heterogeneous Semantic Links[C]//Proc. of the 32nd Int'l Conf. on Very Large Data Bases'06. Seoul, Korea: [s. n.], 2006: 427-438.
  • 5Han Jiawei, Kamber M. Data Mining Concepts and Techniques[M]. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
  • 6Christopher D. Manning and Hinrich Schutze: Foundations of Statistical Natural Language Processing[M]. Cambridge, USA: the MIT Press, 1999.
  • 7Hotho A, Jaschke R, Schmitz C, et al. Information Retrieval in Folksonomies: Search and Ranking[C]//Proc. of Extended Semantic Web Conference. Budva, Montenegro: [s. n.], 2006: 411-426.
  • 8Xu Shengliang, Bao Shenghua, Cao Yunbo, et al. Using Social Annotations to Improve Language Model for Information Retrieval[C]//Proc. of the 16th ACM CIKM Conference. Lisbon, Portugal: [s. n.], 2007: 1003-1006.
  • 9Berger A, Lafferty J. Information Retrieval as Statistical Translation[C]//Proc. of the 22rid ACM SIGIR Conference. Berkeley, USA: Is. n.], 1999: 222-229.
  • 10Zhai Chengxing, Lafferty J. Two-stage Language Model for Information Retrieval[C]//Proc. of the 25th ACM S1GIR Conference. Tampere, Finland: [s. n.], 2002: 49-56.

共引文献30

同被引文献21

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部