期刊文献+

对称锥互补问题的一类惩罚FB函数

A penalized FB function for symmetric cone complementarity problems
下载PDF
导出
摘要 利用欧几里德若当代数技术,在单调的条件下,用内积的方法证明了对称锥互补问题的一类FB互补函数相应的势函数的水平集有界性.该方法在理论和应用上相较于以往用迹不等式证明势函数水平集有界性更具普适性和推广价值.在设计算法求解势函数的无约束极小化问题时,水平集有界性是保证下降算法收敛的重要条件,因此,对算法的设计具有理论意义. With Euclidean Jordan algebras,we proved the level-boundedness of the merit function related to a penalized Fischer-Burmeister function for symmetric cone complementarity problems with monotonicity in a method of inner product.The method has more universality and promotion value both on theories and applications compared with previous trace inequality method to prove level-boundedness of the merit function.Level-boundedness plays an important part on a guarantee of decline algorithm convergence when we design algorithm to solve unconstrained minimization problem.Therefore,it has theoretical significance on the design of algorithm.
作者 高雷阜 张亚红 GAO Leifu;ZHANG Yahong(Institute of Optimization and Decision,Liaoning Technical University,Fuxin 123000,Liaoning,China)
出处 《运筹学学报》 CSCD 北大核心 2018年第3期125-131,共7页 Operations Research Transactions
基金 教育部高校博士学科科研基金联合资助(No.20132121110009) 辽宁省教育厅辽宁省高等学校基本科研项目(No.LJ2017QL031) 辽宁省博士启动基金(20170520075)
关键词 对称锥互补问题 FB互补函数 欧几里德若当代数 水平集有界 symmetric cone complementarity problem Fischer-Burmeister complementarity function Euclidean Jordan algebras level-boundedness
  • 相关文献

参考文献5

二级参考文献77

  • 1修乃华,韩继业.对称锥互补问题[J].数学进展,2007,36(1):1-12. 被引量:7
  • 2Tao J. and Gowda, M.S., Some P-properties for nonlinear transformations on Euclidean Jordan algebras, Math. Oper. Res., 2005, 30: 985-1004.
  • 3Yoshise, A., Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones, SIAM Jonrnal on Optimization, 2006, 17: 1129-1153.
  • 4Chen X.D., Sun D. and Sun J., Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems, Comput. Optim. Appl., 2003, 25: 39- 56.
  • 5Facchinei, F. and Pang J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I and II, New York: Springer-Verlag, 2003.
  • 6Faraut, J. and Koranyi, A., Analysis on Symmetric Cones, New York: Oxford University Press, 1994.
  • 7Faybusovich, L., Euclidean Jordan algebras and interior-point algorithms, Positivity, 1997, 1: 331-357.
  • 8Gowda, M.S., Sznajder, R. and Tao J., Some P-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra and Its Applications, 2004, 393: 203-232.
  • 9Gowda, M.S. and Sznajder, R., Automorphism invariance of P and GUS properties of linear transforma- tions on Euclidean Jordan algebras, Math. Oper. Res., 2006, 31: 109-123.
  • 10Koecher, M., The Minnesota Notes on Jordan Algebras and Their Applications, edited and annotated by A. Brieg and S. Walcher, Berlin: Springer, 1999.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部