期刊文献+

Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging 被引量:1

利用时空协同克里金方法时空估算中国新疆降水量(英文)
下载PDF
导出
摘要 In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy. 在对地观测中,所研究的地学变量不仅具有时间、空间特征,还受其它变量的影响,采用多元时空相关数据,可以提高时空估值的精度。以新疆区域为试验区,利用1960—2013年气象站的降水量观测数据的月平均值,采用时空克里金和时空协同克里金插值方法,估计试验区2013年1—12月降水量的时空分布情况。在使用时空协同克里金插值过程中,建立时空直接变异函数和协变异函数是时空CoKriging插值的关键一步。以该地区1960—2013年月平均降水量为主变量,引入同时间同位置的月平均空气相对湿度作为协变量,对降水量和空气相对湿度进行时空直接变异函数和时空交叉协变异函数建模。实验结果表明,引入空气相对湿度作为协变量的时空协同克里金的插值方法比时空普通克里金的插值方法的均方根误差降低了31.46%;引入空气相对湿度作为协变量的时空协同克里金的插值方法的估计值与观测值的相关系数比时空普通克里金的插值方法的相关系数提高了5.07%。因此,引入空气湿度作为协变量的时空协同克里金插值方法提高了插值精度。
作者 HU Dan-gui SHU Hong 胡丹桂;舒红(State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing,Collaborative Innovation Center of Geospatial Technology, Wuhan University;College of Computer Technology and Software Engineering,Wuhan Polytechnic)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期684-694,共11页 中南大学学报(英文版)
基金 Project(17D02)supported by the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,China Project supported by the State Key Laboratory of Satellite Navigation System and Equipment Technology,China
关键词 space-time CoKriging product-sum model VARIOGRAM PRECIPITATION interpolation 时空协同克里金 积和模型 变异函数 降水量 插值法
  • 相关文献

参考文献1

二级参考文献18

  • 1GOSSAGE B. The application of indicator kriging in the modeling of geological data [R]. West Perth WA Australia, Symposium on Beyond Ordinary Kriging, 1998: 40.
  • 2MARINONI O. Improving geological models using a combined ordinary-indicator kriging approach [J]. Engineering Geology, 2003, 69: 37-45.
  • 3GHOLAMNEJAD J, ANSARI A H, YARAHMADI BAFGHI A, TAQIZADEH M. Determination of ore/waste contacts by using indicator kriging, case study: Choghart iron mine of Iran [J]. International Joumal of Engineering, 2010, 23: 269-276.
  • 4LARRONDO P F, DEUTSCH C V. Methodology for geostatistical model of gradational geological bmmdaries: Local non-stationary LMC [R]. Edmonton, AB, In Centre for Computational Geostatistics, 2004: 301.1-301.19.
  • 5ORTIZ J M, EMERY X. Estimation of mineral resources using grade domains: Critical analysis and a suggested methodology [J]. The Journal of The Southern African Institute of Mining and Metallurgy, 2005, 105: 247-256.
  • 6ORTIZ J M, EMERY X. Geostatistical estimation of mineral resources with soft geological botmdaries: A comparative study [J]. The Journal of The Southern African Institute of Mining and Metallurgy, 2006, 106: 577-584.
  • 7EMERY X, ORTIZ J M, CERES A M C. Geostatistical modeling of rock type domains with spatially varying proportions: Application to a porphyry copper deposit [J]. The Journal of The Southern African Institute of Mining and Metallurgy, 2008, 108: 285-292.
  • 8CALCAGNO P, CHILES J P, COURRIOUX G, GUILLEN A. Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential field interpolation and geological rules [S]. International Journal of Physics of the Earth and Planetary Interiors, 2008, 171 : 147-157.
  • 9DES F, CHILIES J P, GUILLEN A. Delineate 3D iron ore geology and resource models using the potential field method [C]// llth SAGA Biennial Techincal Meeting and Exhibition. Swaziland, 2009: 227-235.
  • 10OSTERHOLT V, HEROD O, ARVIDSON H. Regional hree-dimensional modelling of iron ore exploration targets [C]// Proceedings AuslMM Orebody Modelling and Strategic Mine Planning. Peth, 2009: 35-41.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部