期刊文献+

基于Fast R-CNN的动态分区多轿厢电梯调度研究 被引量:6

Multi-car Elevator Systems Using Dynamic Zoning Based on Fast R-CNN
下载PDF
导出
摘要 为了在有限的空间内有效提高垂直交通系统的运载效率,在原有的一条井道内安装多个电梯轿厢,即"一井多梯"或称多轿厢电梯应运而生,它是提高运行效率、解决垂直交通拥挤的最佳选择,也是全世界垂直交通运输领域研究的前沿问题。针对多轿厢电梯的调度问题,笔者提出了一种基于Fast R-CNN的动态分区多轿厢电梯调度方法,首先通过FastR-CNN模型检测厅前和轿厢内人数;然后运用检测结果进行合理派梯;最后根据派梯任务划分轿厢的运行区域,实现合理调度。通过实验仿真表明,该方法适用于电梯的各种交通模式,具有较高的运行效率和灵活性。 In order to improve the efficiency of the vertical transportation system effectively in limited space,multiple elevator cars are installed in a single elevator shaft, which is called "one shaft, multi-cars" elevator or multi-car elevator, which is the best choice to raise the transportation efficiency and solve the congestion in the vertical traffic. For the multi-car elevator scheduling, this paper puts forward a multi-car elevator scheduling method using dynamic zoning based on fast region-based convolutional network(Fast R-CNN). Firstly, fast R-CNN model is used to detect the number of people in the front of the hall and in the car;Then, elevators are reasonably dispatched according to the detection results;Finally, a zone is allocated to a car according to the assignment of calling to the car. The experimental results show that the proposed method is applicable to all kinds of elevator traffic patterns, and has higher operation ef?ciency and flexibility.
作者 刘剑 赵悦 徐萌 常玲 LlU Jian;ZHAO Yue;XU Meng;CHANG Lin(College of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China;Department ofInformation and Control Engineering, Shenyang Urban Construction University, Shenyang 110168, China)
出处 《控制工程》 CSCD 北大核心 2019年第2期208-214,共7页 Control Engineering of China
基金 国家自然科学基金(61272253) 辽宁省自然科学基金(201602616) 辽宁省教育厅科学研究项目(L2015443) 住建部项目(2015-K2-015)
关键词 多轿厢电梯 FAST R-CNN 模型 动态分区 电梯调度 Multi-car elevator fast R-CNN model dynamic zoning elevator scheduling
  • 相关文献

参考文献6

二级参考文献100

  • 1孙逸翔.基于GNP算法类人机器人全身运动的规划[J].微型电脑应用,2011(8):5-8. 被引量:1
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 4Suchendra M. Bhandarkar,Timothy D. Faust,Mengjin Tang. CATALOG: a system for detection and rendering of internal log defects using computer tomography[J] 1999,Machine Vision and Applications(4):171~190
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 6Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 7Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 8Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 9Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 10Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.

共引文献887

同被引文献70

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部